Architectural Acoustic Consulting Services: Environmental Noise, Auralization, Sound and Vibration Isolation per ASTM and ANSI Standards

Enteknograte Corp. has become an industry leader through our wide range of experience in advanced simulation-based design procedures, and our cutting-edge architectural acoustic consulting services. Enteknograte conducts field sound level certifications for architects, engineers, surveyors, developers, flooring contractors, and various governmental agencies, as well compliance testing for new equipment, community noise, and industrial noise per ASTM and ANSI standards.
  • Sound measurements to determine the existing reverberation time (RT) of rooms and evaluate sound absorption of the rooms
  • Acoustical testing simulation including Sound Transmission Class (STC) and impact (FIIC) testing of residential and commercial properties and Noise Criterion testing of background noise in rooms
  • Reviewing architecture plans and details to determine potential acoustic conditions of the space and evaluate the building envelope for noise isolation from exterior noise sources
  • Acoustical treatment options to optimize reverberation time
  • Mechanical equipment noise control guidelines
  • Design noise criteria for noise sensitive spaces
  • Sound isolations between noise sensitive spaces
  • Vibration isolations for mechanical equipment
Acoustics is the key to success for many buildings and building spaces, and it shall be carefully considered for a space to function well. When acoustic considerations are applied to a building, not only it will increase a space’s functionality, but also add tremendous value to the building. We own state-of-the-art simulation-based design softwares and can perform an array of acoustical tests simulation, including Field IIC and STC , Noise Criteria testing, Reverberation Time (RT60) testing, as well compliance testing for new equipment, community noise, and industrial noise per ASTM and ANSI standards.

Environmental noise

Environmental noise is defined as the unwanted or harmful outdoor sound created by human activity, such as noise was emitted through transport, road traffic rail traffic, air traffic and industrial activity. World Health Organization (WHO) identifies that noise pollution is an increasing problem but has not really been taken seriously enough by the people who have tended to prioritiseother seemingly more pressing environmental issues. Environmental noise poses a risk to people’s health and quality of life because it can lead to physical and physiological effects.
 
 

 

Auralization

When it comes to discussing solutions for our clients, we show our work. We use all available tools during the design phase , comparative auralization, digital analysis and go one step further by correlating those tools with an evaluation by ear. The simulation-based design with advanced acoustics environment simulation softwares, enable us to present real-world sound and noise inside and outside of buildings. We speak all the languages of actors, artists, engineers, and designers.
Enteknograte Architectural Building Room Acoustics Noise Design Consultant Service Comsol Odeon Actran Ansys Simulia Revit
Enteknograte Architectural Building Room Acoustics Noise Design Consultant Service Comsol Odeon Actran Ansys Simulia Revit

Sound Isolation

Structural Acoustics analyzes noise transmission from building exterior envelope to interior and vice versa, as well as noise transmission from one room to another within the building environment. Inadequate acoustical isolation may lead to elevated sound levels within the space which reduces privacy, comfort level and concentration ability; severely limits speech intelligibility and has implications for noise health effects. Primary noise paths often include roofs, ceilings, eaves, walls, windows, doors, room partitions, as well as flanking, ducting and other penetrations. Sufficient noise containment control ensures space functionality and is often required by local municipal codes.
 
Before the design drawings, we will develop 3D simulation of the interior acoustics. The simulation model will be used to predict, through calculation, the expected levels of reverberation. The predicted acoustic characteristics will be evaluated with respect to the reverberation criteria to address speech intelligibility or musical quality if applicable. Where necessary, we will provide recommendations to optimize the interior acoustics and sound system performance with regard to the location and specification of interior surface treatments.
Enteknograte offers a Virtual Engineering approach with CFD and FEA tools such as MSC Cradle, Ansys Fluent, StarCCM+  for flows simulation and FEA based Codes such as ABAQUS, Ansys, Comsol and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components. Dependent of problem, we use ESI VA-one, MSC Actran and ODEON Room Acoustics Software as acoustics solver
Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.

WE WORK WITH YOU

We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.

Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae(Simufact, Digimat, Nastran, MSC APEX, Actran Acoustic solver), ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.
msc actran

Simulation-Based Design for better understand and improve the acoustics performance of your designs:

  • Sound radiation by vibrating structures: powertrain, engine components (intake manifold and air filter, valve cover, etc.), compressors, electrical motors, loudspeakers.
  • Intake and exhaust noise, including complex mufflers and silencers.
  • Air conditioning units and distribution systems.
  • Sound absorption inside passenger compartment of cars and trains.
  • Sound propagation in complex media with mean flow or temperature gradient.
  • Audio devices such as telephones, hearing aids or musical instruments.

 

AeroAcoustics

AeroAcoustics simulation try to use advanced capabilities with couple using of CFD simulation and advanced Acoustic solvers to predict accurately and efficiently the noise generated by turbulent flows. Results from an unsteady flow simulation performed with CFD codes such as Ansys Fluent, StarCCM+, Numeca, AVL FIRE M, OpenFOAM and others are used by AeroAcoustics solver to compute aerodynamic noise sources.

With using AeroAcoustics simulation, our engineers can study the noise generated by any turbulent flow and the interactions between the aeroacoustic noise sources and a vibrating structure, absorbant materials or acoustic traps such as resonators.

Applications:
  • Air conditioning modules (HVAC).
  • Side mirror noise.
  • Airframe noise (landing gear, trailing edge).
  • Air distribution systems.
  • Fan Noise
Geartrain VibroAcoustics Simulation- MultiBody Dynamics and FEA Acoustic Solver
Geartrain VibroAcoustics Simulation- MultiBody Dynamics and FEA Acoustic Solver

VibroAcoustics

In order to study the interaction of structural vibration with the fluid, it is necessary to model the acoustic behavior of the involved structural components including the conventional material for acoustic or visco-elastic media, porous or incompressible media, composite materials or active components like piezo-electric ceramics.

Applications:

  • Automotive: Noise related problems from powertrains, intakes, exhausts, passenger compartment, trim, seats, hoses, tires, windows and windshields, audio, HVAC.
  • Aerospace: Sound transmission through cockpit and fuselage, noise propagation in air distribution system, random dynamic response at take-off.
  • Consumer goods: Telephones, headsets, loudspeakers, hearing aid devices, disk drives, washing machines, refrigerators, cameras
Acoustic propagation at the inlet of a turbofan engine computed by Actran ansys abaqus siemens star-ccm fluent 3

Boundary Element Acoustics

Often used for exterior acoustics problems, the boundary element method (BEM) is ideal for problems involving very complex geometry that may be a challenge to model for the FEM method. The BEM method helps simplify exterior acoustics simulation since only the outer surface mesh of the geometry is needed. This simplifies both the modeling process and reduces the degrees of freedom in the simulation model which will result in easier analysis.

Finite Element Acoustics

The finite element method (FEM) for acoustics analysis is ideal for simulating interior acoustics problems. In addition to FEM being the more efficient method in terms of solution speed, FEM acoustics lets you perform coupled vibro-acoustics analyses that take structural modes and soundproofing materials into consideration. FEM acoustics can be used to solve exterior acoustics problems as well, which is often used for noise analysis of air induction systems in powertrain.

Aerospace Engineering: AeroAcoustics and VibroAcoustics Simulation

Acoustic simulation helps aircraft manufacturing companies to analyze and detect the sources that create noise. It can be used to study the noise flow and the paths that it uses to reach the receiver. Enteknograte engineers offers the best available tools and unmatched consulting experience in: Fuselage and cockpit insulation assessment and optimization, Engine nacelle liner design, Environmental Control System noise propagation in air distribution duct, Ramp noise, Broad-band aero-acoustics, Acoustic fatigue
Read more...

AeroAcoustics and VibroAcoustics in Automotive Industry

Even low noise levels can significantly degrade the comfort for the user. AeroAcoustics help us to predict and understand how to design quiet workplaces, quiet car and aircraft interiors, or silent electronic devices. In the next level, in order to study the interaction of structural vibration with the adjacent fluid, it is necessary to model the acoustic behavior of the involved structural components and VibroAcoustics aspects.
Read more...

NVH & Acoustics for Hybrid & Electric Vehicles

In NVH Engineering and simulation of Hybrid/Electric Vehicles, the noise from tire, wind or auxiliaries, which consequently become increasingly audible due to the removal of the broadband engine masking sound, should be studied. New noise sources like tonal sounds emerge from the electro-mechanical drive systems and often have, despite their low overall noise levels, a high annoyance rating. Engine/exhaust sounds are often used to contribute to the “character” of the vehicle leads to an open question how to realize an appealing brand sound with EV.
Read more...

Structural Dynamics Integrity & Vibro-Acoustics Simulation for Marine & Shipbuilding Industry

CFD, Finite Element Method (FEM), Statistical energy analysis (SEA) & Boundary element method (BEM)
Structural-borne noise and vibration need to be minimized for passenger comfort and reduced environmental impact. Our full suite of vibro-acoustics simulation, and optimization tools ensures that we can minimize the structural dynamic impact of your vessel and its components early in the design phase. From large cruise ships to yachts, from frigates to submarines, many design challenges shall be addressed in the design phases of marine applications. If on the one hand the exterior noise, due to propellers, hull radiation or muffler, has to be limited for discretion or environmental reasons; on the other hand, interior noise is of concern for crew and passengers' comfort.
Read more...

Audio Device Design: Acoustic simulation for Sound Quality Analysis in Consumer Electronic Devices

When designing an audio device, the most important thing for an engineer to consider is the quality of the sound. From loudspeakers to headsets, from hearing-aid devices to digital cameras the sound quality is of primary importance and shall be carefully evaluated while designing such applications. A set of predictive numerical tools are thus needed to efficiently design consumer audio appliance. Enteknograte engineering team provides predictive simulation consultant and models to assess the vibro-acoustic performance of audio devices such as loudspeakers or headsets.
Read more...

NVH ( Noise, Vibration, and Harshness ) simulation services

For an early design of NVH characteristics of components and entire machine and vehicle, simulation tools are essential. Enteknograte offers a wide variety of solutions to your questions concerning the simulation of sound and vibrations. Be it the analytical modeling of possible noise sources under consideration of their physical formation mechanisms or FE and MBD models for the simulation of sound and vibration transfer – we are prepared for all of your questions.
Read more...

Finite Element Analysis of Durability and Fatigue Life

Vibration Fatigue, Creep, Welded Structures Fatigue, Elastomer and Composite Fatigue with Ansys Ncode, Simulia FE-Safe, MSC CAEFatigue, FEMFAT
Durability often dominates development agendas, and empirical evaluation is by its nature time-consuming and costly. Simulation provides a strategic approach to managing risk and cost by enabling design concepts or design changes to be studied before investment in physical evaluation. The industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life and FEMFAT used to calculate fatigue life of multiaxial, welds, short-fibre composite, vibration, crack growth, thermo-mechanical fatigue.
Read more...

Vibration Fatigue Finite Element Simulation: Time & Frequency Domain

Structural vibration can be a source for many product related problems; it can cause fatigue and durability problems as well as adverse reactions to the user or bystanders in the form of undesirable vibrations that can be felt or heard. As well, undesired structural vibrations can prevent products from operating as required and potentially becoming a safety concern. The Vibration Fatigue simulation predict fatigue in the frequency domain and it is more realistic and efficient than time-domain analysis for many applications with random loading such as wind and wave loads.
Read more...

Hydrodynamics & HydroAcoustics simulation for AIV (Acoustic Induced Vibration)

The pressure reduction process induces turbulent pressure fluctuations in the flowing medium, which in turn excites the downstream pipe wall, causing stresses and potentially fatigue failure. The intensity of vibration tends to increase with mass flow rate, velocity, and pressure loss. AIV (Acoustic Induced Vibration) failures are known to occur preferentially at non-axisymmetric discontinuities in the downstream piping, such as at small-bore branches and their welded supports.
Read more...

Cavitation in Propulsion Systems

CFD Analysis of Propulsion Systems and Cavitation for Marine and Shipbuilding Industry
For water pumps, marine propellers, and other equipment involving hydrofoils, cavitation can cause problems such as vibration, increased hydrodynamic drag, pressure pulsation, noise, and erosion on solid surfaces. Most of these problems are related to the transient behavior of cavitation structures. To better understand these phenomena, unsteady 3D simulations Modeling Cavitation of cavitating flow around single hydrofoils are often performed and the results are compared to experiments.
Read more...

Multibody Dynamics & NVH (Noise, vibration, and harshness)

Noise, vibration, and harshness (NVH) are critical factors in the performance of many mechanical designs but designing for optimum NVH can be difficult. While strength and durability limits are being pushed further and further, requirements for noise reduction are becoming more stringent. In addition, focus is increasingly being placed on transmission and powertrain noise because other sources could be reduced meanwhile.
Read more...

Noise, Vibration & Harshness – NVH for Electric Motors

To optimize for NVH, our engineers use the forces from the EM analysis to perform advanced vibro-acoustic simulations. The forces are mapped to evaluate the structural dynamics response of the motor. Modal and harmonic stress coupling responses are important for simulating the NVH of an electric motor and for proper vibro-acoustic design of electric vehicles (EVs). The harmonic analyses generate absolute magnitudes of vibrations and waterfall diagrams to get a complete picture of the motor’s acoustic profile.
Read more...
Acoustic analysis for electric motors vehicles NVH & Vibro-Acoustics Simulation MSC Actran ESI VA one abaqus ansys CFD, FEA, SEA & BEM 2
MSC Actran Hybrid & Electric Vehicles​ NVH & Vibro-Acoustics Simulation MSC Actran ESI VA one abaqus ansys CFD, FEA, SEA & BEM 6
Enteknograte offers a Virtual Engineering approach with CFD and FEA tools such as MSC Cradle, Ansys Fluent, StarCCM+  for flows simulation and FEA based Codes such as ABAQUS, Ansys, Nastran and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components. Dependent of problem, we use ESI VA-one and MSC Actran as acoustics solver

Hydrodynamics CFD simulation, Coupled with FEA for FSI Analysis of Marine and offshore structures

Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, Cavitation, Vibration and Fatigue
Hydrodynamics is a common application of CFD and a main core of Enteknograte expertise for ship, boat, yacht, marine and offshore structures simulation based design. Coupling Hydrodynamic CFD Simulation in Ansys Fluent, Siemens Star-ccm+ and MSC Cradle with structural finite element solver such as Abaqus and Ansys, enable us to Simulate most complicated industrial problem such as Cavitation, Vibration and Fatigue induced by hydrodynamics fluctuation, Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, considering two way FSI (Fluid Structure Interaction) coupling technology.
Read more...

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.
Read more...

Seat Design: Finite Element and CFD Simulation for Static & Dynamic Comfort, Whiplash, Acoustic & Thermal Comfort, Crash Test

Simulation Based Design can help us to ensure the right occupant posture, which is essential for safety, Static and Dynamic Comfort, for example by predicting the H-Point and incorporating whiplash, thermal and Acoustic comfort simulation. The ability to predict the comfort of innovative seat designs using simulation tools, a library of human models with our team experience in CFD (Siemens Start-ccm+, Ansys Fluent and OpenFoam) and FEA (Ansys LS-DYNA, Simulia Abaqus, ESI Pam-Crash and Altair RADIOSS) simulation software with integrated Artificial Intelligence and Machine Learning for innovative design, can help manufacturers to create seats that provide a superior driving experience for their customers.
Read more...

1D/3D Coupled Simulation and Co-Simulation: Detailed Chemistry & Multiphase Flow Modeling with 1D Modeling

Enteknograte engineering team use advantage of CFD solver’s detailed chemistry, multiphase flow modeling, and other powerful features in coupling and co-simulation of CFD (Siemens Star-ccm+, AVL Fire, Ansys Fluent, Converge), 1D systems softwares (Matlab simulink, GT-Suite, Ricardo Wave allowing 1D/3D-coupled analyses to be performed effortlessly) and FEA software (Abaqus, Ansys, Nastran) for engine cylinder coupling, exhaust aftertreatment coupling, and fluid-structure interaction coupling simulation.
Read more...

Aerodynamics Simulation: Coupling CFD with MBD, FEA and 1D-System Simulation

Aerodynamics studies can cover the full speed range of low speed, transonic, supersonic and hypersonic flows as well as turbulence and flow control. System properties such as mass flow rates and pressure drops and fluid dynamic forces such as lift, drag and pitching moment can be readily calculated in addition to the wake effects. This data can be used directly for design purposes or as in input to a detailed stress analysis. Aerodynamics CFD simulation with sophisticated tools such as MSC Cradle, Ansys Fluent and Siemens Star-ccm+ allows the steady-state and transient aerodynamics of heating ventilation & air conditioning (HVAC) systems, vehicles, aircraft, structures, wings and rotors to be computed with extremely high levels of accuracy.
Read more...

eVTOL (Electric Vertical Take-Off and Landing) & UAM (Urban Air Mobility)

FEA & CFD Based Simulation for Airworthiness Certification, Aerodynamics, Aeroacoustics and Crashworthiness
The VTOL, eVTOL and UAM market is constantly changing and evolving, so maintaining a competitive edge both within the industry and supporting mission effectiveness requires significant research and development activities. Enteknograte offers the industry’s most complete simulation solution for Urban Air Mobility (UAM) and Vertical Take off and Landing (VTOL) aircrafts.
Read more...

Full Vehicle MultiBody Dynamics Simulation: Car Ride, Driveline, Engine and Tire MBD

With MultiBody Dynamic Simulation, you can perform various analyses on the vehicle to test the design of the different subsystems and see how they influence the overall vehicle dynamics. This includes both on- and off-road vehicles such as cars, trucks, motorcycles, buses, and land machinery. Typical full vehicle analysis includes handling, ride, driveline, comfort, and NVH. Automotive models are also used for Realtime applications (HiL, SiL, and MiL). We can also examine the influence of component modifications, including changes in spring rates, damper rates, bushing rates, and anti-roll bar rates, on the vehicle dynamics.
Read more...

Robots Dynamics & Performance Assessment: Coupled MBD & FEA Simulation-Based Design

Robot designers can increase the performance of their products by using Coupled FEA and MBD software such as Ansys, Abaqus, Simpack and MSC Adams multibody simulation (MBS) software to simulate the transient dynamic behavior of the complete robot mechanism and control algorithm.
Read more...

Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort. Our Finite Element (LS-Dyna, Ansys, Abaqus) and CFD simulation (Siemens Start-ccm+, Ansys Fluent , Ansys CFX and OpenFoam) for heat transfer analysis, thermal management, and virtual test process can save time and money in the design and development process, while also improving the thermal comfort and overall quality of the final product.
Read more...

Aerodynamic Noise Simulation

Sound caused by pressure oscillation of fluid, such as wind noise, and sound caused by resonance can be predicted using Large Eddy Simulation (LES) and a weak compressible flow model. A Fast Fourier Transform calculation can be used within the CFD software to predict the frequency of noise. Predicting the noise generated by complex flows from steady CFD solutions allows us to study the noise generated by turbulent flows from CFD solutions.
Read more...

Acoustics and Vibration: FEA and CFD for AeroAcoustics, VibroAcoustics and NVH Analysis

Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.
Read more...

Electromagnetic Multiphysics

FEA & CFD Based Simulation Including Thermal Stress, Fatigue, and Noise, Vibration & Harshness – NVH for Electric Motors
Enteknograte Finite Element Electromagnetic Field simulation solution which uses the highly accurate finite element solvers and methods such as Ansys Maxwell, Simulia Opera, Simulia CST, JMAG, Cedrat FLUX, Siemens MAGNET and COMSOL to solve static, frequency-domain, and time-varying electromagnetic and electric fields includes a wide range of solution types for a complete design flow for your electromagnetic and electromechanical devices in different industries.
Read more...