Simufact Forming

Simufact Forming is an established software solution for the simulation of metal forming manufacturing processes. The software covers all essential areas of forming technology: forging, cold forming, sheet metal forming, all major incremental processes and mechanical joining. Simufact Forming provides support in microstructure simulation, calculation of die load, material flow and prediction of material properties in the course of conventional and inductive heat treatment. Furthermore, thermo-mechanical joining methods of pressure welding are also supported.

Highly precise results

Simufact Forming takes into account all areas of forming technology and therefore ensures a highly realistic simulation of the processes. We achieve this high degree of precision by using boundary conditions and representations that have been conceived with the demands of the user in mind. Simufact Forming considers:

  • The kinematics of the machine, no matter what kind, and no matter how complex
  • The behavior of the material, elasticity, plasticity, hardening and softening, as well as effects that depend on temperature and speed
  • The friction and contact between the tooling and the workpiece
  • The thermodynamics of the process, workpiece heating, heat transfer into the dies and into the environment, temperature increase due to forming energy, friction heat, etc.

Unique Dual Solver Technology

Mature solver technologies, with the highest precision of reproducing the relevant physical effects, contribute substantially to the high quality of Simufact Forming’s simulation results.

Simufact Forming offers two numerical calculation methods for the simulation that complement each other:

  • A finite-volume solver, based on MSC´s explicit Dytran solver, is used for the especially efficient simulation of warm and hot forging processes with significant burr formation
  • A finite-elements solver, based on MSC´s implicit Marc solver for nonlinear applications, is used to simulate all process types.

Both solvers have continuously been developed by MSC over the past decades and make it possible to reproduce the complex, nonlinear physics of forming processes with the highest precision. These solver technologies offer the utmost precision in result by the use thermo-mechanical, elasto-plastic element formulation.

Besides the quality of the results, in practice the computation time is another especially relevant quality criteria. Only short computation times make the use of simulation software relevant for daily work. Simufact offers the efficient parallelization of simulation with its additional Performance module: The use of the highly effective methods, domain decomposition method (DDM) for the FE solver and shared memory parallelization (SMP) for FE and FV solvers, allows the computation time to be effectively decreased.

Stamping Nakajima Test Forming Metal Abaqus Ansys Msc Simufact Nastran Code aster ls-dyna FEA

Applications of Simufact Forming

Simufact Forming allows for both two-dimensional (axisymmetric and planar) and three-dimensional simulations on the same graphical user interface. Three-dimensional simulations can use symmetries of the real process (cyclic symmetries as well!) to effectively reduce model size and computation effort. Any kind of transition from two- to three-dimensions, with or without symmetries, is possible.

All temperatures, from room temperature to almost melting point, can be simulated. The simulation always takes into account (even for cold forming processes) dissipation and friction heat, as well as the heat transfer with dies and the environment.

All (metallic) materials common to forming technology can be simulated. The material database shipped with the Simufact Forming Hub already includes:

  • Light metals (aluminum, magnesium, titanium)
  • Steels (carbonaceous, low and highly alloyed, austenitic and dual phase steels)
  • Non-ferrous heavy metals (copper, brass, bronze)
  • Zinc alloys
  • Heavy metals (lead, cadmium, zirconium, uranium)
  • Special alloys (nickel-copper alloys, nickel-chromium alloys and others)
  • Super alloys (Inconel, Hastelloy, Waspaloy, Incoloy, Nimonic)

In addition to this, typical tool steels for the characterization of elastic dies are included, too.

The recrystallization behavior of steel and nickel based alloys can be examined with the module Microstructure Matilda.

All forming machines common to forming technology can be simulated. The user can describe special kinematics in table format. Rotating tools are simulated by the Rolling module. Simufact Forming simulates closed loop controlled aggregates such as those used for ring rolling or open die forging with the respective application modules.

Modeling entire process chains

The application module’s functions allow for the simulation of single manufacturing steps. However, the modules can also be combined spanning applications and products in order to connect the various manufacturing steps to entire process chains and to simulate these as a whole:

  • Integrated process chain simulation of any forming technology manufacturing sequence by linking and using arbitrary application modules
  • Integrated process chain simulation of all forming processes and mechanical joining operations (using the Mechanical Joining application module)
  • Process chain simulation by linking forming processes and welding processes together, with the highest result precision based on complete compatibility of solver and material models with Simufact Welding
  • The influence of heat treatments on the forming properties of the material can be simulated globally with Simufact Forming
  • The Heat Treatment application module offers a more detailed look into local material properties during heat treatments
  • Export the simulation results to third-party products, for example for fatigue and crash simulations


We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.

Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae(Simufact, Digimat, Nastran, MSC APEX, Actran), ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.

Sheet Metal Forming: Advanced Finite Element Method for Industry Leading Simulation

Sheet metal components are highly suited to lightweight constructions. Different methods of sheet metal forming can be used depending on the geometry of the desired part. Based on the characteristics of each deformation process, the forming engineer can choose between: Deep drawing, ironing, punching, bending, stamping, and a variety of other manufacturing processes. Due to the geometric complexity of the parts being manufactured, additional multistage forming that combines different processes is frequently required within a phase of production.

Finite Element Simulation of Hot Forging

The recrystallization is responsible, through the complete reformation of the microstructure, possibly multiple times, for the formation of a relatively fine-grained microstructure. It exhibits the optimal combination of strength and ductility. This circumstance qualifies hot forging as one of the most important manufacturing processes for the production of highly stressed safety components.

Metal Forming Process: Open Die Forging Finite Element Simulation

When designing open die forging processes, the pass schedule, including possible intermediate heating, must be planned in such a way as to reach the required final geometry and the required material properties with as little effort as possible. High performance materials such as titanium and nickel based alloys can only be forged within a narrow temperature range.

Cold Forming Finite Element Simulation

Cold forming results in strain hardening, meaning both the strength and resistance to forming increase with ongoing deformation. Thus, cold formed components can withstand greater operational loads. At the same time, strain hardening results in reduced formability (ductility) of the material. If the component needs to be formed further, the strain hardening of the component has to be removed via recrystallization annealing. Cold forming and annealing are often part of a multi-stage process.

Finite Element Simulation of Roll Forming and Ring Rolling

Rolling is one of the most diverse forming processe in the forming technology. It is used for the production of semi-finished as well as finished products. Rolling processes are used in all areas of forming technology, both in hot forging and cold forming, and of course in sheet metal forming. There is a multitude of rolling processes. Some are named here: flat rolling, profile rolling, tube rolling, roll forming, forge rolling, cross-wedge rolling, wire rolling, and cross-row rolling.

Finite Element Simulation of Heat Treatment

In principle, there are two kinds of heat treatment processes: processes resulting in a thorough change of the microstructure and processes that result in merely changing regions close to the surface of the component. Examples of the former would be thermal processes, such as annealing and hardening. Examples of the latter, thermochemical processes, would be diffusion and coating processes, such as carburization, case hardening, nitrating, boriding.

Hard Metal: Finite Element Simulation for Mechanical Properties on the Microstructural Level

Hard metals are functional materials with tuned performances arising from the composite microstructure. Understanding those composites on the microstructural level is key for material suppliers who need to innovate their products. Hard metals are two-phase materials with significantly differing mechanical properties on the microstructural level. Material properties are tuned by varying the content and microstructure of a hard inclusion phase. Key to further material development is to understand and optimize microstructural stresses in the composite.

FEA (Finite Element) Welding Simulation

RSW (Resistance Spot Welding), FSW (Friction Stir Welding), Pressure Welding, Arc, Electron and Laser Beam Welding
Enteknograte engineers simulate the Welding with innovative CAE and virtual prototyping available in the non-linear structural codes such as LS-DYNA, Ansys, Comsol, Simufact Welding, ESI SysWeld and ABAQUS. The Finite element analysis of welding include Arc Welding, laser Beam Welding, RSW, FSW and transfer the results of welding simulation for next simulation like NVH, Crash test, Tension, Compression and shear test and fatigue simulation.

Acoustics and Vibration Simulation

FEA & CFD for AeroAcoustics, VibroAcoustics and NVH Analysis in Automotive, Aerospace, Shipbuilding and Consumer Product Manufacturers.
The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.

Metal Forming Simulation

Sheet Metal Forming, Hot Forging, Cold Forming, Open Die Forging, Roll Forming, Extrusion and Heat Treatment with Ansys, Abaqus, LS-Dyna and Simufact
Using advanced Metal Forming Simulation methodology and FEA tools such as Ansys, Simufact Forming, Autoform, FTI Forming, Ls-dyna and Abaqus for any bulk material forming deformation, combining with experience and development have made Enteknograte the most reliable consultant partner for large material deformation simulation. Metal Forming Simulation include Springback Compensation, Surface Defects, Cost Estimation and Phase Transformation in Sheet Metal, Hot Forge, Rolling, Extrusion, Open Die Forging and Heat Treatment Finite Element Analysis.

Finite Element Analysis of Durability and Fatigue Life

Vibration Fatigue, Creep, Welded Structures Fatigue, Elastomer and Composite Fatigue with Ansys Ncode, Simulia FE-Safe, MSC CAEFatigue, FEMFAT
Durability often dominates development agendas, and empirical evaluation is by its nature time-consuming and costly. Simulation provides a strategic approach to managing risk and cost by enabling design concepts or design changes to be studied before investment in physical evaluation. The industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life and FEMFAT used to calculate fatigue life of multiaxial, welds, short-fibre composite, vibration, crack growth, thermo-mechanical fatigue.

Additive Manufacturing and 3D Printing

FEA Based Design and Optimization with Simufact, Abaqus, ANSYS and MSC Apex for powder bed fusion (PBF), directed energy deposition (DED) and binder jetting processes
With additive manufacturing, the design is not constrained by traditional manufacturing requirements and specific number of design parameters. Nonparametric optimization with new technologies such as Artificial Intelligence in coupled with Finite Element method, can be used to produce functional designs with the least amount of material. Additive manufacturing simulations are key in assessing a finished part’s quality. Here at Eneteknograte, dependent of the problem detail, we use advanced tools such as MSC Apex Generative Design, Simufact Additive, Digimat, Abaqus and Ansys.

Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort. Our Finite Element (LS-Dyna, Ansys, Abaqus) and CFD simulation (Siemens Start-ccm+, Ansys Fluent , Ansys CFX and OpenFoam) for heat transfer analysis, thermal management, and virtual test process can save time and money in the design and development process, while also improving the thermal comfort and overall quality of the final product.