Multiobjective optimization

Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. Example problems include analyzing design tradeoffs, selecting optimal product or process designs, or any other application where you need an optimal solution with tradeoffs between two or more conflicting objectives. Our Engineers save time and improve products by optimizing them against performance or cost metrics through statistical methods, such as Design of Experiments (DOE) or Design for Six Sigma. Virtual prototyping is necessary for cost efficiency.
Test cycles are reduced and placed late in the product development.
CAE-based optimization and CAE-based robustness evaluation becomes more and more important in virtual prototyping. Enteknograte engineering team use advanced algorithmic for sensitivity analysis, optimization, robustness evaluation, reliability analysis and robust design optimization.
–   Optimization is introduced into virtual prototyping
–   Robustness evaluation is the key methodology for safe, reliable and robust products
–   The combination of optimizations and robustness evaluation will lead to robust design optimization strategies

Reduced Costs
Easier, earlier, quicker analysis enables design simplification, especially on unusual hull designs. Early design correction avoids costly rework in production.
Let's Talk About Your Needs
Quicker Delivery
Reduce project delays caused by late-emerging design changes and rework. Reduce contingency planning.
Let's Talk About Your Needs
Better Design Quality
Easier analysis workflow promotes more thorough design development.
Let's Talk About Your Needs
Reduce Project Risk
Begin construction work with increased confidence. Reduce the risks and contingencies in tackling unconventional designs.
Let's Talk About Your Needs

Sensitivity analysis

Sensitivity analysis scans the design/random space and measures the sensitivity of the inputs with statistical measures. Application as pre-investigation of an optimization procedure or as part of an uncertainty analysis. Results of a global sensitivity study are:
–      Sensitivities of inputs with respect to important responses
–      Estimate the variation of responses
–      Estimate the noise of an underlying numerical model
–      Better understanding and verification of dependencies between input and response variation

We use optimization methods such as:

  • Design of Experiments (DOE) :  Central Composite, Data File, Full Factorial, Fractional-Factorial, Box-Behnken, Latin Hypercube, Optimal Latin Hypercube, Orthogonal Array, Dependent Variable Sampling and Parameter Study with appropriate postprocessing options.
  • Optimization :  Gradient: NLPQL, MMFD, LSGRG2; Pattern: Hooke-Jeeves, Downhill Simplex, Adaptive Simulated Annealing; Mixed Integer/Real: MISQP, MOST; Genetic Algorithms: Evolution, Multi-Island GA; Multi-Objective: AMGA, NSGA II, NCGA, Particle Swarm; Other: Stress-Ratio Method, Pointer I & II Automatic Optimizer, Multi-objective approximation Loop. 
  • Response surface modeling (RSM) : orthogonal polynomial models, Radial or Ellliptic Basis Function methods, shape functions and smoothing, Kriging method with Exponential, Gaussian and Matern correlation functions.
  • Monte Carlo Analysis : Simple random sampling, descriptive sampling, eight standard distributions, and distribution truncation.
  • Six Sigma : probabilistic analysis to measure the quality of a design given uncertainty or randomness of a product or process. Perform reliability analysis with the mean value method, FORM and SORM reliability method, importance sampling, sobol sampling, DOE sample, or Monte Carlo Analysis.
  • Taguchi Method : Improve the quality of a product or process by striving to achieve performance targets and minimizing performance variation. Taguchi analysis for static, dynamic, and dynamic-standardized system types

Enteknograte engineering team use advanced CAE software with special features for mixing the best of both FEA tools and CFD solvers: CFD codes such as Ansys Fluent, Siemens StarCCM+ and FEA Codes such as ABAQUS, Nastran, LS-Dyna and the industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life to calculate fatigue life and MSC Actran and ESI VA One for Acoustics and VibroAcoustics simulations.

With combination of deep knowledge and experience in sophisticated FEA and CFD based simulation and design tools and coupling with 1D System modeilng Software such as Matlab Simulink, Enteknograte engineers can solve any problem with any level of complexity in Medical and Biomedical applications Design and Optimization.

CFD and FEA consultant at Enteknograte

FEA and CFD Based Simulation

Hydrodynamics of Boat Yacht Ship Hull propulsion CFD based Design Ansys Fluent siemens star-ccm Numeca fine Marine Openfoam2
CFD and FEA consultant at Enteknograte

FEA and CFD Based Simulation

High Temperature Fatigue Life FEA Simulation Abaqus Ansys Nastran Fe-safe Ncode Design
NASA transonic rotor 37 Aerodynamics CFD Simulation Design Axial Compressor Ansys Fluent Siemens Star-ccm Numeca Fine Turbo MSC Nastran CFX
Turbine Nozzle Stress and Temperature distribution Fatigue Coupled CFD FEA CHT Ansys Fluent Abaqus Nastran Openfoam Siemens Star-ccm
aditive manufacturing abaqus ansys matlab finite element method nastran ls-dyna

Considering complexity and needs to have new procedure and constitutive equation, we must try to develop new FEA and CFD based software to overcome engineering challenges.

FEA and CFD based Programming needs experience and deep knowledge in both Solid or fluid mechanics and programming language such as Matlab, Fortran, C++ and Python.

Enteknograte’s engineering team use advanced methodology and procedure in programming and correct constitutive equation in solid, fluid and multiphysics environment based on our clients needs.

We use subroutine’s with programming languages such as Fortan, C and Python in CFD and FEA sofware such as Abaqus, Ansys, Fluent and Star-ccm+ to add new capability and Constitutive equation.

Enteknograte use Mathematical Methods and Models for Engineering Simulation. We, focuses on numerical modelling and algorithms development for the solution of challenging problems in several engineering sectors specialized in the development of software for the numerical discretization of partial differential equations, linear algebra, optimization, data analysis, High Performance Computing for several engineering applications.

Together, we enable customers to reduce R&D costs and bring products to market faster, with confidence.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

A world-class consultancy for engineering, technology, innovation, our industry know-how and technical expertise is unrivalled.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

We use advanced virtual engineering tools, supported by a team of technical experts, to global partners in different industries.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

Our Software team is made up of developers, industry experts and technical consultants ensuring we can respond to each client’s individual needs

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

Real world Simulation: Combination of experience and advanced analysis tools

Calling upon our wide base of in-house capabilities covering strategic and technical consulting, engineering, manufacturing ( Casting, Forming  and Welding) and analytical software development – we offer each of our clients the individual level of support they are looking for, providing transparency, time savings and cost efficiencies.
Enteknograte engineers participate in method development, advanced simulation work, software training and support. Over experiences in engineering consulting and design development, enables Enteknograte’s engineering team to display strong/enormous client focus and engineering experience. The Enteknograte team supports engineering communities to leverage CFD-FEA simulation softwares and methodologies. It leads to the creation of tailored solutions, aligned with the overall product development process of Enteknograte clients.

CAE Simulation: CFD, FEA, System Modeling, 1D-3D coupling

Integrated expertise covering every Equipment component analysis. From concept through to manufacture and product launch, and for new designs or Equipment modifications, we provide engineering simulation expertise across projects of all sizes. Simulation has become a key enabling factor in the development of highly competitive and advanced Equipment systems. CAE methods play a vital role in defining new Equipment concepts.

metal forming simulation: ansys abaqus simufact forming
Metal Forming Simulation
Automotive Engineering: Powertrain Component Development, NVH, Combustion and Thermal simulation, Abaqus, Ansys, Ls-dyna, Siemens Star-ccm Enteknograte
Crash Test and Crashworthiness
Finite Element and CFD Based Simulation of Casting esi procast
Casting Simulation
Additive Manufacturing: FEA Based Design and Optimization with Abaqus, ANSYS and Nastran
Additive Manufacturing
MultiObjective Design and Optimization of Turbomachinery: Ansys Fluent, Numeca fine turbo, Siemens star-ccm+, simulia abaqus, Ls-dyna, Matlab
Design of Turbomachinery
CFD Heat Thermal simulation: Abaqus, Ansys Fluent, Star-ccm+, Ls-dyna, Matlab
CFD Heat Transfer
Fluid Structure Interaction FSI with Ansys Abaqus, Fluent Star-ccm Comsol
Hydrodynamics
Fluid Structure Interaction FEA CFD FSI Abaqus Ansys Comsol LS-dyna Wind Turbine Enteknograte
Fluid Strucure Interaction
Exhaust Acoustics and vibration: ESI va one, msc actran, abaqus, ansys, fluent, star-ccm , nastran
Acoustics & Vibration
Aerodynamic Simulation CFD Ansys Fluent Siemens Star-ccm+ Numeca xflow cradle
Aerodynamic Simulation
Ansys Fluent, Siemens Star-ccm+ Numeca fine , Avl Fire, Matlab
Combustion Simulation
Multiphase Flow Simulation Abaqus, Ansys, Fluent, Siemens Star-ccm+, Matlab
MultiPhase Flow Simulation
Fatigue Simulation Abaqus Ansys FE-Safe NCode Design Life FEA Finite Element Enteknograte
Creep & Fatigue
Multibody dynamics MBD Abaqus, Ansys Fluent, Star-ccm+, Ls-dyna, Matlab, fortran , C++, Python
Multi-Body Dynamics (MBD)
composite impact simulation , Comsol Abaqus, Ansys, Fluent, Siemens Star-ccm+, Aerospace and defenceMatlab, Fortran, Python CFD FEA
Composite Design
welding FEA Simulation Simufact Welding ESI Sysweld Abaqus Ansys Enteknograte
Welding Simulation
Optimization of Wind Turbine Composite Fracture Mechanic Damage Design Abaqus Ansys Finite Element CFD Enteknograte
Multi-Objective Optimization
CFD and FEA based Fortran, C++, Matlab and Python Programming
Advanced Fortran, C++, Matlab & Python Programming