FEA Based Composite Material Design and Optimization: MSC Marc, Abaqus, Ansys, Digimat and LS-DYNA

FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization

Composite material modeling Consultant, Training and Simulation services of Enteknograte cover wide range of industry using advanced FEA Technology for design, ultimate failure, fatigue, fracture, impact, crash, environmental degradation, acoustics and multiphysics simulations with sophisticated FEA solvers such as Abaqus, Ansys, LS-DYNA, RADIOSS, COMSOL and MSC MARC.

Finite Element Method and in general view, Simulation Driven Design is an efficient tool for development and simulation of Composite material models of Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Nanocomposite, Rubber and Elastomer Composites, woven Composite, honeycomb cores, reinforced concrete, soil, bones ,Discontinuous Fiber, UD Composit and various other heterogeneous materials.
Enteknograte engineering team can develop user defined constitutive equation and Procedure for Composite simulation as Plug-in as client preferred FEA Software or even individual software for special industrial and research application in engineering programming language environment such as Matlab, Python and Fortran.

Reverse Engineering in Composite Material Simulation

Material Engineering is the art of understanding composites in-depth, to innovate materials based on this knowledge and to follow a micromechanical approach to describe their real performance. In general, a direct engineering approach is used, meaning that per-phase properties of composite constituents are given directly in combination with microstructure information and composite properties are computed on that base and allows insight into materials and to systematically understand mechanisms that dominate the macroscopic material properties arising from the microscopic composition.

Material models must correlate to experimental behavior as closely as possible. For this purpose a reverse engineering procedure is used that results in the parametrization of micro-mechanical models and their adaption to a set of anisotropic material measurements to meet the global composite performance best possible.

Design structural parts with in depth knowledge about composite materials specificities in:

What Enteknograte do with FEA Based Simulation Design in Composite Material Engineering:

  • Multi-scale analyses to predict the nonlinear microstructure behavior of plastic & composite materials & structures
  • Speeds up the development process for composite materials and structures
  • Perform detailed analyses of materials on the microstructure level
  • Derive microstructure material models suited for multi-scale coupling of the micro- and macroscopic level
  • Bridges the gap between manufacturing and performance
  • Understand Thermal, Thermo-Mechanical and Electrical behaviour of New Material
  • Crash Performance simulation
  • Fatigue and Creep assessment of Composite and New Material
  • Acoustic and Vibration analysis before Manufacturing
  • Stiffness and Strength properties
  • Process simulation: Injection and compression molding, drape molding, RTM, etc.
  • Industries: Aerospace, Automotive, Consumer Electronics, Material Suppliers, etc.

CAE softwares: MSC software (Digimat, Marc, Nastran), Abaqus, Altair, ANSYS, Autodesk Moldflow, LS-Dyna, PAM-CRASH, RADIOSS and SAMCEF.