Robots Dynamics & Performance Assessment: Coupled MBD & FEA Simulation-Based Design
FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization
Robot designers can increase the performance of their products by using Coupled FEA and MBD software such as Ansys, Abaqus, Simpack and MSC Adams multibody simulation (MBS) software to simulate the transient dynamic behavior of the complete robot mechanism and control algorithm.
Also our engineers use System modeling software with FEA and MBD software to go far beyond kinematic modeling to provide a complete working prototype of the robot and task that it is performing, including handling, manufacturing or anything that can be done in real life. This approach enable us to understand the effects of component deformation, contacts, friction, gear backlash, vibration, etc in design step. so we can calculate the robot trajectory with a much higher level of accuracy.
MDB makes it possible to accurately simulate and diagnose the dynamic performance of the robot under any operating scenario prior to building a prototype, making it possible to increase robot performance by evaluating many different design configurations and control algorithms while getting the robot to market earlier by reducing the amount of physical testing that needs to be performed.
ADAMS SIMULATIONS HELP CURIOSITY ROVER MAKE PERFECT TOUCHDOWN ON MARS
JPL Engineers dealt with complexities involving Martian gravity, atmosphere, surface slope, and landing velocities that could not be duplicated exactly here on Earth, and relied on the simulations to gain the insight they needed to feel confident in the execution of the mission. The series of Adams simulations took place in parallel with design – but it was insight from the simulations that helped guide the design to maturity, and to prevent any failures resulting from potentially harsh loading conditions during the mission.
Adams was used to predict the loads on components and sub-assemblies and these loads in turn were used as input to structural analysis that optimized the design to provide the strength to withstand mission loads while minimizing size and weight. The philosophy of the modeling was not to try and predict every event to 100% accuracy but rather to determine the bounding limit design loads that could be expected on every component.
Curiosity was modeled in Adams to a high level of fidelity including many flexible elements some of which incorporated nonlinear stiffness and damping. In the beginning of the project, separate models were used for the rover separation, mobility deployment, and touchdown phases but during the later stages of the project all of the models were emerged into one.
WE WORK WITH YOU
We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.
Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae(Simufact, Digimat, Nastran, MSC APEX, Actran Acoustic solver), ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.
Enteknograte Engineering team use advanced simulation tools for MBD analysis consultant such as MSC ADAMS, Simulia SIMPACK with combined/coupled manner with FEA and System modeling sofware such as ANSYS, Abaqus, MSC NASTRAN, MSC MARC and Matlab and MSC Easy5 for System modeling for real world simulation of motion and MultiBody Dynamics:
- Rigid and flexible multibody systems
- Sensitivity analysis
- Vibration analysis
- Vehicle design & testing
- Coupled control/mechanical system analysis
- Kinematics and kinetics
- Contact and friction
- Loads and displacement
- Durability and life-cycle analysis
- Fracture or fatigue calculations
- Kinetic, static, and dissipative energy distribution
- Vehicular cornering, steering, quasi-static, and straight-line analysis
- Control system analysis