Ansys Fluent: Create advanced physics models , generates accurate and reliable fluid simulation results —all in a customizable and intuitive space

Ansys Fluent unlocks new potentials for CFD analysis. A fluid simulation software with fast pre-processing and faster solve times to help you be the fastest to break into the market. Fluent’s industry leading features enable limitless innovation, while never making a compromise on accuracy. Ansys Fluent pushes the envelope of performance, sustainability, and productivity for computational fluids dynamics (CFD) simulations. This release includes significant GPU technology advancements, accurate hydrogen modeling from production to consumption, workflow, and automation improvements.

Ansys Flunet hypersonic cfd simulation

Hypersonic Speed Simulation Software

Ansys simulation tools are perfect solutions to examine all the challenges of hypersonic speed. As an aircraft begins to travel above Mach 1, fluids start to exhibit different physical behavior. Our multiphysics simulations enable users to capture the complex phenomena that occur, including strong shocks, plasma, ablation, structural deformation and chemical nonequilibrium. Shorten your development time and reduce testing efforts with industry-leading software that allows you to quickly tackle problems specific to hypersonic design.

Gas Turbine Design, Modeling and Simulation

Leverage Ansys simulation to design the next generation of gas turbines. Optimize your gas turbine design process, minimize overdesign, reduce costs and accelerate time to market with our end-to-end solution. By using digital testing early in development, design changes can be made quickly and more affordably. Ansys can help you innovate and design safe, reliable and efficient gas turbines.

15% Reduction In Fuel Burn

Leverage simulations to tune the overall performance of your gas turbine by reducing specific fuel consumption.

30% Cost Reduction

Explore how efficient simulation solutions help to cut development costs and reliance on physical testing.

33% Design Cycle Time Reduction

Discover how simulation helps to streamline the design process and reduce cycle time and minimize overdesign.

9x-16x return on investment

Investing in simulation provides a competitive edge.

Designing gas turbines to meet performance and safety standards remains a challenging process. Ansys offers a best-in-class multiphysics simulation solution for all gas turbine modules from inlet to exhaust. The end-to-end solution helps engine manufacturers increase safety, performance and efficiency while reducing emissions, noise, weight and maintenance cost.

Ansys Fluent CFX Gas Turbine Design Modeling Simulation

Gas turbine simulation is an integral part of the design process. Original equipment manufacturers (OEMs) demand robust, fast and accurate solutions to reach optimized designs the first time. Ansys offers a range of solutions including, but not limited to:

  • Aerodynamic performance
  • Combustion, acoustics and aerothermal
  • Structural durability and reliability
  • Foreign object damage, blade out and icing
  • Additive manufacturing, digital twin and ROMs
  • Process compression; Workflow Management
Wind Turbine Design ansys fluent cfx cfd simulation

Wind Turbine Design, Location and Operational Optimization

The global energy mix continues to rebalance, demanding more efficient, larger wind turbines that can operate in harsher environments—both onshore and offshore. Ansys provides a comprehensive multiphysics, multiscale simulation solution for wind turbine engineering development, manufacturing and in-service operations.

As engineers devise new ways to capture renewable energy from the wind – from traditional large scale wind turbines to innovative turbines on high-rise buildings and artificial trees with energy generating mechanical leaves – Ansys’ comprehensive modeling and simulation solutions enable engineers to ensure their designs deliver maximum performance and efficiency.

Battery Design and Simulation

Advance your battery design and safety with rapid, accurate simulation. Electrochemistry can be used for age and life prediction. Battery thermal management and runaway can be simulated to ensure top performance and safety. A reduced order model (ROM) can be created by extracting key thermal characteristics to analyze temperature in seconds.

Ansys helps you advance battery designs while balancing safety, performance, size, cost and reliability to make you the market leader. Our multiphysics battery simulation solution helps bring together interdisciplinary expertise at different scales. With our help, you can reduce project costs by up to 30% and design cycle time by up to 50%.

Performance Modeling Solutions

Whether designing a battery for electric transportation or consumer products, every design choice requires complex decisions. Engineers can rapidly evaluate tradeoffs while minimizing reliance on arbitrary design rules and expensive, trial-and-error physical testing. Our accurate battery simulation gets the results you need from electrochemistry to electrode, cell, module, pack and system and the coupling of different physics.

Simulation for Battery Cell Production

Electrochemistry simulation supports from the manufacturing of the battery cell to predicting age and lifetime. Cell manufacturers are tasked with the challenging job of storing as much power as possible, while reducing size, weight and cost. Accurately simulating electrochemistry before the manufacturing process helps with materials property selection and electrode structure design.

 

 
 

 

 

Ansys Fluent Battery Modeling Simulation CFD

Best-in-Class Battery Thermal Management

Batteries are extremely sensitive to temperature. Thermal management is critical to reduce temperature variations and to avoid thermal runaway. As a battery’s temperature increases, its rate of chemical reactions and performance can improve. However, at one point, a rise in temperature may cause permanent damage. Ansys delivers best-in-class thermal management simulation to produce a cost-effective cooling device and safe battery.

Electric Motor Design, Analysis and Verification CFD ANSYS Fluent Maxwell FSI Thermal

Electric Motor Design, Analysis and Verification

Ansys offers a complete workflow that progresses from concept design to detailed electromagnetics, thermal and mechanical analyses of the motor. Coupled electromagnetic-thermal-stress-and vibro-acoustics simulation of the motor using Ansys tools such as Ansys Fluent,  Ansys Maxwell and Ansys sound results in a high-fidelity, accurate and robust design that is optimized for performance, cost and efficiency.

Turbulence Models

A wide range of turbulence models are available to choose the right model for your application. Fluent offers a wide range of turbulence models including the industry-leading Generalized k-ω (GEKO) model. GEKO is a revolutionary concept with tunable coefficients that can be adjusted to different flow regimes.

Ansys Fluent CFD Simulation
Ansys Fluent multiphase CFD Spray Simulations

Simulate With a Range of Multiphase Flows

Ansys Fluent offers an extensive range of gas-liquid multiphase flow simulation capabilities spanning discrete phase modeling (DPM), volume of fluid (VoF) and Eulerian Multiphase. Critical to chemical, pharmaceutical and petrochemical processes, the effective design, scale up and operation of gas liquid process equipment systems delivers significant productivity and efficiency impact over the lifecycle of the equipment. Simulation enables you to ensure optimal performance gets replicated across scales of operation before expensive equipment is installed and commissioned.

Combustion Models

Accurate combustion models allow you to gain insight into system performance and flow phenomena. Assuring you have accurate combustion is critical for the precise mix of turbulence, chemistry and the interaction between them. Fluent offers accurate and validated reacting flow models for your combustion applications.

 

combustion simulation ansys fluent cfd
Fluid structure interaction FSI Bridge Finite Elemen CFD aerodynamics wind induced vibration Ansys Fluent

Fluid Structure Interaction

Accurately predict interactions between fluids and solids from pressure and/or thermal loads. Solve your fluid-structure interaction challenge to make sure your product is safe, reliable and optimized. Fluent can solve FSI problems standalone and couples with Ansys Mechanical for the most complex simulations.

WE WORK WITH YOU

We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.

Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae, ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.

Reactor Design & Combustion Engineering for Chemical Processing

AVL Fire, Siemens Star-ccm+, Ansys Fluent and Converge
Our engineering simulation for reactor design including CFD for chemical reactor design, FEA structural and thermal analysis and instrumentation and control software used for design and analysis of chemical reactors enable our reaction engineers to answer what-if questions as they design and enhance reactors performance, energy usage, reactor yield and product uniformity.
Read more...

Heat Transfer-Equipment Design and Analysis for Chemical Processing: Comprehensive CFD & Finite element method

Heat transmission by conduction, convection and radiation in laminar or turbulent flows for fluids, such as steam, thermal liquids, liquid metals and non-Newtonian fluids, can be design and analyze and new concept can be developed using engineering simulation for heat generation and heat transfer equipment. Using these solutions our engineers can identify hot spots, associated thermal stresses, equipment design and process efficiencies, and other issues that affect system performance.
Read more...

Mixer Design and Analysis with FEA and CFD based-Simulation

In the chemical industry, proper reactor design is crucial because this is where both mixing and reaction occur. Mixing can be defined as an operation which reduces the degree of nonuniformity of all properties of a system, single or multiphase with one or many components. For a mixing sensitive reaction, the rate of mixing affects both the yield and selectivity of the reaction. Numerical flow simulations with CFD provide important insights into the flow processes of the entire system vessel agitator and the associated component.
Read more...

Multiphase Simulation for Chemical Processing

Using a variety of advanced modeling techniques to study both continuous and particulate phases,with combination of Finite element method(FEA), DEM and CFD, we can handle simulation of particle included systems and their properties including following parameters: Particle flows, Cohesion, Material wear, Particle size distribution, Particle mechanics, Surface and morphology, Particle–particle interaction, Turbulence and dispersion, Geometry effects, Erosion, Particle attrition, Homogeneous and hydrogenous reactions, Particle flows, Electrostatic effects.
Read more...

Filtration System Design and Engineering for Chemical Processing with CFD & Finite Element Method

CFD for separation and filtration includes modeling of transport of solid particle are used by diverse set of customers to understand and reduce erosion in solid separation and extraction devices. Enteknograte’s engineering simulation team has experience in using FEA and CFD for separation and filtration systems, give clients a clearer understanding of filtration optimization through in-depth studies of filter media, particle deposition and caking, pressure drop, throughput, back flushing, and mechanical design.
Read more...

Chemical Processing Simulation and Design: Coupled CFD, FEA and 1D-System Modeling for Heat Transfer, Filtration & Mixer System , Reactor Design & Combustion Engineering

Enteknograte's engineering team CFD and FEA solutions for the Materials & Chemical Processing is helping companies to significant engineering improvement from equipment and processes to chemical and petrochemical refining to glass and metals manufacturing -  forming and casting -. Enteknograte's engineering team solution includes CFD for chemical process Industry, FEA for process industry and expand to cover electromagnetic and system design engineering concerns.
Read more...

Oil, Gas and Petrochemical Industries

With combination of deep knowledge and experience in FEA and CFD and sophisticated simulation tools, Enteknograte engineers can solve any problem with any level of complexity in Oil, Gas and Petrochemical Industries: Drilling, Cementing/Mudflow in Casings, Offshore Structures Wind and Wave Loading, Offshore Structures and Hydrodynamics, Gas Dispersion, Environmental Pollution Dispersion, Blast Prevention, LNG Plant Site Selection Operation and Design,
Read more...

GREEN ENERGY: WIND TURBINE AND WIND FARM

With deep Knowledge in FEA and CFD and combining or coupling different CAE tools for real world simulation such as MSC Cradle, Ansys Fluent, Siemens Star-ccm+, Abaqus and MSC Nastran, Enteknograte engineering team can handle any aerodynamic problem include wind turbine, Wind Farm design and wind effects including Vertical axis wind turbine, Horizontal axis wind turbine, Complete motion of the rotor in winds and loads extraction for FEM analysis, Fluid-Structure Interaction (FSI) investigation and flutter occurence.
Read more...

Gas Turbine Combustion CFD Simulation: Detailed Chemistry

AVL Fire, Siemens Star-ccm+, Ansys Fluent and Converge
Gas turbine combustion can be a challenge to achieve accurate and reliable CFD simulation results. Computational efficiency requires appropriate mesh resolution and turbulence, spray, combustion, and emissions models that provide an appropriate level of detail. With using advanced and specilized CFD tools such as AVL Fire, Siemens Star-ccm+, Ansys Fluent and Converge, Enteknograte engineers can accurately predict important kinetically limited gas turbine phenomena such as ignition, flashback, and lean blow off. In addition, we can investigate the combined effects of chemistry and turbulence and optimize combustor performance parameters.
Read more...

Fuel Injectors and Spray CFD Simulation

CFD software such as MSC Cradle, AVL Fire, Siemens Star-ccm+, Ansys Fluent and Converge is well equipped to simulate fuel injectors and spray processes including liquid atomization, drop breakup, collision and coalescence, turbulent dispersion, spray cavitation, drop-wall interaction, and drop evaporation.
Read more...

Electromagnetic Multiphysics

Enteknograte Finite Element Electromagnetic Field simulation solution which uses the highly accurate finite element solvers and methods such as Ansys Maxwell, Simulia Opera, Simulia CST, JMAG, Cedrat FLUX, Siemens MAGNET and COMSOL to solve static, frequency-domain, and time-varying electromagnetic and electric fields includes a wide range of solution types for a complete design flow for your electromagnetic and electromechanical devices in different industries.
Read more...

CFD Simulation of Reacting Flows and Combustion

Engine & Gas Turbine, Fuel Injector & Spray, Exhaust Aftertreatment with Detailed Chemistry
Knowledge of the underlying combustion chemistry and physics enables designers of gas turbines, boilers and internal combustion engines to increase energy efficiency and fuel flexibility, while reducing emissions. Combustion System couples multiphysics simulations incorporating accurate physical models with an advanced chemistry solver to provide a complete end-to-end combustion chemistry simulation capability to optimize products that involve reacting flow.
Read more...

CFD Simulation of Engine Exhaust Aftertreatment

Aftertreatment systems are a critical component to ensure emissions from engines and power generation equipment comply with environmental standards. CFD (computational fluid dynamics) simulations can be used as part of a rapid prototyping process to design systems that reduce NOx, CO, and particulate matter emissions with minimal efficiency and maintenance costs. Two of the main challenges in aftertreatment system design are maximizing the uniformity of flows upstream of catalysts and eliminating areas at risk for urea deposition.
Read more...

1D/3D Coupled Simulation and Co-Simulation: Detailed Chemistry & Multiphase Flow Modeling with 1D Modeling

Enteknograte engineering team use advantage of CFD solver’s detailed chemistry, multiphase flow modeling, and other powerful features in coupling and co-simulation of CFD (Siemens Star-ccm+, AVL Fire, Ansys Fluent, Converge), 1D systems softwares (Matlab simulink, GT-Suite, Ricardo Wave allowing 1D/3D-coupled analyses to be performed effortlessly) and FEA software (Abaqus, Ansys, Nastran) for engine cylinder coupling, exhaust aftertreatment coupling, and fluid-structure interaction coupling simulation.
Read more...

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.
Read more...

Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort. Our Finite Element (LS-Dyna, Ansys, Abaqus) and CFD simulation (Siemens Start-ccm+, Ansys Fluent , Ansys CFX and OpenFoam) for heat transfer analysis, thermal management, and virtual test process can save time and money in the design and development process, while also improving the thermal comfort and overall quality of the final product.
Read more...

Acoustics and Vibration: FEA and CFD for AeroAcoustics, VibroAcoustics and NVH Analysis

Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.
Read more...

Simulation of Plasma Based Devices: Microwave Plasma and RF Plasma Analysis with Coupling Particle in Cell (PIC), MHD, CFD and FEA Solvers

Charged particles and their non-linear discharge characteristics have been especially difficult to model and simulate accurately. We provide consulting services for the modeling and simulation of plasma and other flow systems. Our consulting services utilize our specialized domain expertise in plasma, reactive flows and surface chemistry mechanism development and integration with multi-dimensional flow and plasma systems.
Read more...

Finite Element Analysis of Durability and Fatigue Life

Vibration Fatigue, Creep, Welded Structures Fatigue, Elastomer and Composite Fatigue with Ansys Ncode, Simulia FE-Safe, MSC CAEFatigue, FEMFAT
Durability often dominates development agendas, and empirical evaluation is by its nature time-consuming and costly. Simulation provides a strategic approach to managing risk and cost by enabling design concepts or design changes to be studied before investment in physical evaluation. The industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life and FEMFAT used to calculate fatigue life of multiaxial, welds, short-fibre composite, vibration, crack growth, thermo-mechanical fatigue.
Read more...

Multi-Phase Flows CFD Analysis

Multi-Phases flows involve combinations of solids, liquids and gases which interact. Computational Fluid Dynamics (CFD) is used to accurately predict the simultaneous interaction of more than one combination of phases that can be gases, solids or fluids. Typical applications involve sprays, solid particulate transport, boiling, cavitation, state-changes, free surface flows, dispersed multiphase flows, buoyancy problems and mixed species flows. For example, the risks from flow or process-induced vibration excitation of pipework are widely acknowledged in onshore process plants, offshore topsides and subsea facilities.
Read more...

Turbomachinery Generative Design & Optimization

The sensitivity information comes directly from the flow field so the optimized shape is the one that fits the given flow best. Unlike traditional design methods that rely on trial and error between a given geometry and flow field predicted by CFD codes, we use 3D inverse design method starts by identifying what we want to do to the fluid flow in terms of 3D pressure field and mathematically derives the optimal geometry to achieve that outcome. This significantly reduces the time taken for each design.
Read more...

Hydrodynamics CFD simulation, Coupled with FEA for FSI Analysis of Marine and offshore structures

Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, Cavitation, Vibration and Fatigue
Hydrodynamics is a common application of CFD and a main core of Enteknograte expertise for ship, boat, yacht, marine and offshore structures simulation based design. Coupling Hydrodynamic CFD Simulation in Ansys Fluent, Siemens Star-ccm+ and MSC Cradle with structural finite element solver such as Abaqus and Ansys, enable us to Simulate most complicated industrial problem such as Cavitation, Vibration and Fatigue induced by hydrodynamics fluctuation, Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, considering two way FSI (Fluid Structure Interaction) coupling technology.
Read more...

Race Car Aerodynamic Simulation and Optimization via CFD

We provide Engineering Analysis of fluid flow over a body, wing or component with Star-ccm+ and Ansys Fluent. We can work from a drawing, CAD file or can scan the geometry of your car or component. A standard analysis includes a report including the following information: Drag Force, Down Force, Drag Coefficient, Pressure Coefficient, Pressure Contour Plot, Velocity Contour and Velocity Streamlines.
Read more...

Turbine, Pump & Compressor (Axial or Centrifugal)

Multidisciplinary Turbomachinery Design, Analysis & Optimization
We can design axial turbines, Axial Pump, Centrifugal Compressor, Centrifugal Pump and Mixed Flow Compressor/Turbine with or without any pre-loaded profiles, with prismatic (cylindrical) or twisted blades, multiple extractions/injections, inter-stage heat exchangers, Curtis & Rateau stages, impulse & reaction designs, drilled and reamed nozzles, partial admission, etc. Enteknograte’s engineering team use CFD software’s such as Siemens Star-ccm+, Ansys Fluent and Numeca Fine/Turbo in co-simulation with FEA structural solvers, such as Abaqus, Ansys and MSC Nastran.
Read more...

Rotors Aerodynamic Simulation via Coupled FEA (MBD)/CFD Method: Aeroelastic Behavior Assessment

The blade vortex interactions (BVI) generate high load peaks and represent one of the main noise sources of a helicopter. In contrast to the rotors the flow around the fuselage is basically incompressible and many helicopters have a blunt body with large flow separations behind the fuselage. Depending on the flight conditions there may be strong interactions between main and tail rotors, rotor head, fuselage and the empennage, e.g. the tail shake phenomenon which is mainly caused by separations behind the rotor head.
Read more...

Drone Aerodynamic & Acoustic Simulation Based Design

For drone dynamics, the acoustics and noise challenge is to design disc loading, rotor tip speed, propeller interactions and vehicle scattering in such a way that the overall in-situ noise levels are reduced. It is a multidisciplinary issue, calling for the combined use of various simulation techniques.
Read more...

Hydrodynamics & HydroAcoustics simulation for AIV (Acoustic Induced Vibration)

The pressure reduction process induces turbulent pressure fluctuations in the flowing medium, which in turn excites the downstream pipe wall, causing stresses and potentially fatigue failure. The intensity of vibration tends to increase with mass flow rate, velocity, and pressure loss. AIV (Acoustic Induced Vibration) failures are known to occur preferentially at non-axisymmetric discontinuities in the downstream piping, such as at small-bore branches and their welded supports.
Read more...

Ship Stability & Safety Analysis Including Hydrodynamics & Aerodynamics Effects

Operability limits can also be of more functional nature, e.g. holding a vessel steady against an offshore windmill foundation, or launching and recovering a dinghy safely onboard in seaway. Many issues related to dynamic stability of the vessel in waves, e.g. steerability of high speed marine vehicle in waves or the dynamic stability of a vessel against excessive heeling in extreme sea states: ship motions and accelerations Simulation, shipping of green water analysis, slamming impacts simulation, sloshing simulation, steerability in waves analysis, DP -capability simulation.
Read more...

Cavitation in Propulsion Systems

CFD Analysis of Propulsion Systems and Cavitation for Marine and Shipbuilding Industry
For water pumps, marine propellers, and other equipment involving hydrofoils, cavitation can cause problems such as vibration, increased hydrodynamic drag, pressure pulsation, noise, and erosion on solid surfaces. Most of these problems are related to the transient behavior of cavitation structures. To better understand these phenomena, unsteady 3D simulations Modeling Cavitation of cavitating flow around single hydrofoils are often performed and the results are compared to experiments.
Read more...

Hydrodynamic Performance of Ship Hull: CFD Based Design

A typical project for hydrodynamic hull optimization may include: Establishing a close dialog between Enteknograte and the Client; Defining a realistic operating profile; Discussing and combining Enteknograte ’s design ideas with the client’s design philosophy to obtain an optimal hull in both a hydrodynamic and building perspective; Optimizing the hull forebody based on the operating profile; Optimizing the hull aftbody to improve the propulsive efficiency, including consideration on propeller and machinery configuration; Assessing the Energy Efficient Design Index.
Read more...

Hydrodynamics CFD simulation, Coupled with FEA for FSI Analysis of Marine and offshore structures

Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, Cavitation, Vibration and Fatigue
Hydrodynamics is a common application of CFD and a main core of Enteknograte expertise for ship, boat, yacht, marine and offshore structures simulation based design. Coupling Hydrodynamic CFD Simulation in Ansys Fluent, Siemens Star-ccm+ and MSC Cradle with structural finite element solver such as Abaqus and Ansys, enable us to Simulate most complicated industrial problem such as Cavitation, Vibration and Fatigue induced by hydrodynamics fluctuation, Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, considering two way FSI (Fluid Structure Interaction) coupling technology.
Read more...

Hydroplaning (Aquaplaning) Simulation

It is important to gain insights on the interaction of a tire with a film of water in order to diagnose the onset of hydroplaning and minimize the tire’s propensity to hydroplane. A coupled Eulerian-Lagrangian methodology, using a multi-material Finite Element formulation within advanced FEA software, is used to analyze the interaction of a tire with the water film. The effect of various parameters on the onset of hydroplaning are investigated using the methodology.
Read more...

Hydropower, Solar Power and Biomass

As move to a more sustainable energy future, Hydro Power, Solar Power, Biomass and other renewable sources will play a key role in reducing our energy footprint and ensuring supply is sufficient for a modernizing population. Enteknograte’s simulation and optimization consultants support this growing industry. Our core competencies include turbine vortex simulation and prediction, acoustic interpretation and assessment, solar farm siting, composite blade analysis and optimization, and transmission dynamics simulation and optimization.
Read more...

Structural Dynamics Integrity & Vibro-Acoustics Simulation for Marine & Shipbuilding Industry

CFD, Finite Element Method (FEM), Statistical energy analysis (SEA) & Boundary element method (BEM)
Structural-borne noise and vibration need to be minimized for passenger comfort and reduced environmental impact. Our full suite of vibro-acoustics simulation, and optimization tools ensures that we can minimize the structural dynamic impact of your vessel and its components early in the design phase. From large cruise ships to yachts, from frigates to submarines, many design challenges shall be addressed in the design phases of marine applications. If on the one hand the exterior noise, due to propellers, hull radiation or muffler, has to be limited for discretion or environmental reasons; on the other hand, interior noise is of concern for crew and passengers' comfort.
Read more...

CFD and FEA in Civil Engineering: Seismic Design, Earthquake, Tunnel, Dam, Concrete Structures and Geotechnical Multiphysics Simulation

Enteknograte, offer a wide range of consulting services based on many years of experience using FEA and CFD: Coupled/Multiphysics problems: mechanics of porous media, spalling of concrete, freezing of ground and young hardening concrete Borehole stability problems Constitutive modeling of concrete Settlement damage on concrete and masonry constructions Pipelines, Earthquake analysis, Tunnel, Dam and Geotechnical Multiphysics Simulation.
Read more...

Marine and Shipbuilding Industry: Finite Element and CFD Based Simulation and Design

Our experience in Marine and Shipbuilding Industry include: Fatigue assessment studies, Modal and vibration analyses, Seakeeping and seaworthiness assessment, Maneuvering studies, Simulation and evaluation of systems, Damage surveys and investigations, Tie-down structural calculations and approval, Collision Investigation, modeling and analysis, Optimizing the Hydrodynamic Performance of Hull, Cavitation, Marine Vibro-Acoustic, Dynamic Integrity.
Read more...

In Silico Medical & Biomedical Device Testing: Finite Element & CFD Simulation and Design, Considering FDA & ASME V&V 40

Enteknograte Biomedical Engineers use FEA and CFD for simulating: Orthopedic products, Medical fasteners, Ocular modeling, Soft tissue simulation, Packaging, Electronic systems, Virtual biomechanics, Knee replacement, Human modeling, Soft tissue and joint modeling, Hospital equipment, Laser bonding, Ablation catheters, Dental implants, Mechanical connectors, Prosthetics, Pacemakers, Vascular implants, Defibrillators, Heart valve replacements.
Read more...

FEA and CFD Simulation for Aerospace Structures: Aerodynamics, Acoustics, Fatigue and Vibration, Thermal Analysis, Crash & Impact

Enteknograte provides a complete solution for aero-structure that addresses multi-disciplinary domains and engineering challenges combining CFD-FEA and 1D-3D multi-objective modeling: Complete wing simulation Dedicated composite simulation for aircraft: designing, analyzing and optimizing Composite material structure, Liquid Composite Molding, composite forming simulation for doors, wings, tails, Horizontal & vertical tailplane simulation, Moving part aerodynamics simulation, Nacelle aerodynamics simulation, Fatigue simulation of components: random vibro-acoustic loading, stress corrosion analysis and visualization
Read more...