MSC Actran: Advanced Acoustics, Aero-Acoustics and Vibro-Acoustics Solver

Actran is the premier acoustic simulation software to solve acoustics, vibro-acoustics, and aero-acoustics problems. Used by automotive manufacturers and suppliers, aerospace and defense companies, and consumer product manufacturers, Actran helps engineers better understand and improve the acoustics performance of their designs.

Actran VibroAcoustics

In order to study the interaction of structural vibration with the adjacent fluid, it is necessary to model the acoustic behavior of the involved structural components. This can be achieved with the rich material library of Actran, that includes the conventional material for acoustic or visco-elastic media, porous or incompressible media, hydroacoustics, composite materials or active components like piezo-electric ceramics. If you prefer, a modal basis of the structure may also be imported from most structural FEA codes.

With the ability to simulate realistic modeling boundary conditions by combining dynamic, kinematic and acoustic constraints, as well as physical excitations like diffuse sound field and turbulent boundary layer, you can obtain accurate representation of the acoustic performance of your designs. In addition, you also have the ability to combine this capability with Actran AeroAcoustics to giving you the ability to model complex aero-vibro-acoustic problems.

Actran AeroAcoustics

Actran AeroAcoustics is a module featuring advanced capabilities to predict accurately and efficiently the noise generated by turbulent flows. Results from an unsteady flow simulation performed with CFD codes such as scFLOWTM and SC/TetraTM (but also FluentTM, Star-CDTM, StarCCM+TM, PowerflowTM, OpenFOAMTM and others) are used by Actran AeroAcoustics to compute aerodynamic noise sources. The acoustic propagation from these aerodynamic sources is then computed to provide users with acoustic results such as noise levels and directivity.

Using Actran AeroAcoustics, the noise generated by any turbulent flow can be thoroughly predicted. Users can benefit from all features of the Actran software suite to study the interactions between the aeroacoustic noise sources and a vibrating structure, absorbant materials or acoustic traps such as resonators.

Aerodynamic noise acoustics aeroacoustic Simulation CFD actran Ansys Fluent Siemens Star-ccm+ xflow cradle
Air Conditioning Duct Noise in Car HVAC Aerodynamic simulation CFD MSC Actran Cradle ansys fluent siemens star-ccm+

Actran SNGR

Predicting the noise generated by complex flows from steady CFD solutions

Use this module to predict the noise generated by turbulent flows from steady CFD solutions. Actran SNGR  recovers aerodynamic noise sources from flow simulations performed with CFD codes such as FluentTM, Star-CDTM, StarCCM+TM, SC/TetraTM or OpenFOAMTM. The results from an steady flow simulation obtained from a RANS CFD analysis are used from the Actran SNGR to synthesize the noise sources, These sources are then imported into an acoustic computation and are then propagated. Actran SNGR allows addressing the noise generated from turbulent flows in a much faster way than classic aero-acoustic approaches and it is specifically useful when relative levels between different designs are needed such as in optimization loops.

Actran for Trimmed Body

Advanced vibro-acoustic analysis

Actran for Trimmed Bodies is a powerful tool for modeling and analyzing complex vibro-acoustic systems such as trim components. Such components are usually made of materials with high damping and strong acoustic absorption characteristics; as such they have a significant influence on the overall vibro-acoustic behavior of the structure.

Actran for Trimmed Bodies provides CAE engineers advanced features for mixing the best of both worlds: Actran physical model and Nastran modal model. Three types of combined models may be created:

  • Actran for Trimmed Bodies is able to merge a set of Actran models of individual trim components with a Nastran body-in-white model in order to create a fully trimmed body vibro-acoustic model.
  • An Actran model may be set in its real-life working environment by connecting it to an existing Nastran model (e.g. a detailed Actran model of a layered windshield may be connected to a Nastran model of the vehicle body).
  • A Nastran model may be enriched by including a reduced Actran model of a specific component. The Actran component is defined as a DMIG data block in the Nastran deck.
Cabin Aerodynamics CFD Simulation noise acoustic Comfort Aeroacoustic analysis HVAC components fans blowers air channels
interior noise NVH & Vibro-Acoustics Simulation MSC Actran ESI VA one abaqus ansys CFD, FEA, SEA & BEM 3

Actran SEA

Statistical Energy Analysis approach offers an effcient solution to study noise and vibration propagation inside large systems at mid- and high-frequencies. The global system is reduced to a set of coupled subsystems and energy balance between them is computed. Building a SEA model with classical approaches usually requires an access to experimental data or analytical expressions limiting the range of geometrical objects that could be handled. With Actran SEA module and its Virtual SEA approach, CAE engineers can use their existing Finite Elements vibro-acoustic models (mode shape and eigen values) to create a SEA model.

Based on automatic or user-defined subsystems definition, SEA parameters are efficiently extracted from the Finite Elements model to perform sound and vibration analysis at mid- and high frequencies together with transfer path analysis regardless the availability of SEA expertise or experimental-based information. Combined with a unique frequency extrapolation method, the Actran SEA module offers the possibility to extend the frequency range validity of existing vibro-acoustic finite elements models to high frequency analysis.

airplane engine aerospace defence AeroAcoustics Simulation MSC Actran ESI VA one abaqus ansys CFD, FEA, SEA & BEM 2

Actran DGM

High performing acoustic propagation modeling

Actran DGM solves the linearized Euler equations using discontinuous finite elements and is used for predicting the noise propagation in complex physical conditions. It is particularly well suited to solving aero-acoustic problems at the exhaust of a double flux aero-engine, including effects such as propagation through strong shear layers, high temperature gradients and non-homentropic mean flows.

Actran TM

A powerful acoustic CAE tool for turbomachinery noise prediction

Use Actran TM to analyze the sound radiated by turbomachinery and to optimize the related acoustic treatments. One of the challenges of acoustic CAE methods is handling of large models associated to high wave number and to large geometrical size and complexity. Actran TM provides efficient solver technologies to address this problem, which includes advanced parallel processing.

In addition to studying aircraft engines, Actran TM can be used to analyze inlet and outlet liners for helicopter turbines, environmental control systems, and auxiliary power units, and for non-aerospace applications like computer cooling systems. Actran TM can be complemented by Actran DGM to solve problems involving complex shear layers and flow gradients occurring at engine exhaust.

Acoustic propagation at the inlet of a turbofan engine computed by Actran ansys abaqus siemens star-ccm fluent 2

WE WORK WITH YOU

We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.

Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae(Simufact, Digimat, Nastran, MSC APEX, Actran Acoustic solver), ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.
msc actran

Aerospace Engineering: AeroAcoustics and VibroAcoustics Simulation

Acoustic simulation helps aircraft manufacturing companies to analyze and detect the sources that create noise. It can be used to study the noise flow and the paths that it uses to reach the receiver. Enteknograte engineers offers the best available tools and unmatched consulting experience in: Fuselage and cockpit insulation assessment and optimization, Engine nacelle liner design, Environmental Control System noise propagation in air distribution duct, Ramp noise, Broad-band aero-acoustics, Acoustic fatigue
Read more...

AeroAcoustics and VibroAcoustics in Automotive Industry

Even low noise levels can significantly degrade the comfort for the user. AeroAcoustics help us to predict and understand how to design quiet workplaces, quiet car and aircraft interiors, or silent electronic devices. In the next level, in order to study the interaction of structural vibration with the adjacent fluid, it is necessary to model the acoustic behavior of the involved structural components and VibroAcoustics aspects.
Read more...

NVH & Acoustics for Hybrid & Electric Vehicles

In NVH Engineering and simulation of Hybrid/Electric Vehicles, the noise from tire, wind or auxiliaries, which consequently become increasingly audible due to the removal of the broadband engine masking sound, should be studied. New noise sources like tonal sounds emerge from the electro-mechanical drive systems and often have, despite their low overall noise levels, a high annoyance rating. Engine/exhaust sounds are often used to contribute to the “character” of the vehicle leads to an open question how to realize an appealing brand sound with EV.
Read more...

Structural Dynamics Integrity & Vibro-Acoustics Simulation for Marine & Shipbuilding Industry

CFD, Finite Element Method (FEM), Statistical energy analysis (SEA) & Boundary element method (BEM)
Structural-borne noise and vibration need to be minimized for passenger comfort and reduced environmental impact. Our full suite of vibro-acoustics simulation, and optimization tools ensures that we can minimize the structural dynamic impact of your vessel and its components early in the design phase. From large cruise ships to yachts, from frigates to submarines, many design challenges shall be addressed in the design phases of marine applications. If on the one hand the exterior noise, due to propellers, hull radiation or muffler, has to be limited for discretion or environmental reasons; on the other hand, interior noise is of concern for crew and passengers' comfort.
Read more...

Audio Device Design: Acoustic simulation for Sound Quality Analysis in Consumer Electronic Devices

When designing an audio device, the most important thing for an engineer to consider is the quality of the sound. From loudspeakers to headsets, from hearing-aid devices to digital cameras the sound quality is of primary importance and shall be carefully evaluated while designing such applications. A set of predictive numerical tools are thus needed to efficiently design consumer audio appliance. Enteknograte engineering team provides predictive simulation consultant and models to assess the vibro-acoustic performance of audio devices such as loudspeakers or headsets.
Read more...

NVH ( Noise, Vibration, and Harshness ) simulation services

For an early design of NVH characteristics of components and entire machine and vehicle, simulation tools are essential. Enteknograte offers a wide variety of solutions to your questions concerning the simulation of sound and vibrations. Be it the analytical modeling of possible noise sources under consideration of their physical formation mechanisms or FE and MBD models for the simulation of sound and vibration transfer – we are prepared for all of your questions.
Read more...

Finite Element Analysis of Durability and Fatigue Life

Vibration Fatigue, Creep, Welded Structures Fatigue, Elastomer and Composite Fatigue with Ansys Ncode, Simulia FE-Safe, MSC CAEFatigue, FEMFAT
Durability often dominates development agendas, and empirical evaluation is by its nature time-consuming and costly. Simulation provides a strategic approach to managing risk and cost by enabling design concepts or design changes to be studied before investment in physical evaluation. The industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life and FEMFAT used to calculate fatigue life of multiaxial, welds, short-fibre composite, vibration, crack growth, thermo-mechanical fatigue.
Read more...

Vibration Fatigue Finite Element Simulation: Time & Frequency Domain

Structural vibration can be a source for many product related problems; it can cause fatigue and durability problems as well as adverse reactions to the user or bystanders in the form of undesirable vibrations that can be felt or heard. As well, undesired structural vibrations can prevent products from operating as required and potentially becoming a safety concern. The Vibration Fatigue simulation predict fatigue in the frequency domain and it is more realistic and efficient than time-domain analysis for many applications with random loading such as wind and wave loads.
Read more...

Hydrodynamics & HydroAcoustics simulation for AIV (Acoustic Induced Vibration)

The pressure reduction process induces turbulent pressure fluctuations in the flowing medium, which in turn excites the downstream pipe wall, causing stresses and potentially fatigue failure. The intensity of vibration tends to increase with mass flow rate, velocity, and pressure loss. AIV (Acoustic Induced Vibration) failures are known to occur preferentially at non-axisymmetric discontinuities in the downstream piping, such as at small-bore branches and their welded supports.
Read more...

Cavitation in Propulsion Systems

CFD Analysis of Propulsion Systems and Cavitation for Marine and Shipbuilding Industry
For water pumps, marine propellers, and other equipment involving hydrofoils, cavitation can cause problems such as vibration, increased hydrodynamic drag, pressure pulsation, noise, and erosion on solid surfaces. Most of these problems are related to the transient behavior of cavitation structures. To better understand these phenomena, unsteady 3D simulations Modeling Cavitation of cavitating flow around single hydrofoils are often performed and the results are compared to experiments.
Read more...

Multibody Dynamics & NVH (Noise, vibration, and harshness)

Noise, vibration, and harshness (NVH) are critical factors in the performance of many mechanical designs but designing for optimum NVH can be difficult. While strength and durability limits are being pushed further and further, requirements for noise reduction are becoming more stringent. In addition, focus is increasingly being placed on transmission and powertrain noise because other sources could be reduced meanwhile.
Read more...

Noise, Vibration & Harshness – NVH for Electric Motors

To optimize for NVH, our engineers use the forces from the EM analysis to perform advanced vibro-acoustic simulations. The forces are mapped to evaluate the structural dynamics response of the motor. Modal and harmonic stress coupling responses are important for simulating the NVH of an electric motor and for proper vibro-acoustic design of electric vehicles (EVs). The harmonic analyses generate absolute magnitudes of vibrations and waterfall diagrams to get a complete picture of the motor’s acoustic profile.
Read more...

Hydrodynamics CFD simulation, Coupled with FEA for FSI Analysis of Marine and offshore structures

Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, Cavitation, Vibration and Fatigue
Hydrodynamics is a common application of CFD and a main core of Enteknograte expertise for ship, boat, yacht, marine and offshore structures simulation based design. Coupling Hydrodynamic CFD Simulation in Ansys Fluent, Siemens Star-ccm+ and MSC Cradle with structural finite element solver such as Abaqus and Ansys, enable us to Simulate most complicated industrial problem such as Cavitation, Vibration and Fatigue induced by hydrodynamics fluctuation, Transient Resistance, Propulsion, Sea-Keeping and Maneuvering Simulation, considering two way FSI (Fluid Structure Interaction) coupling technology.
Read more...

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.
Read more...

Seat Design: Finite Element and CFD Simulation for Static & Dynamic Comfort, Whiplash, Acoustic & Thermal Comfort, Crash Test

Simulation Based Design can help us to ensure the right occupant posture, which is essential for safety, Static and Dynamic Comfort, for example by predicting the H-Point and incorporating whiplash, thermal and Acoustic comfort simulation. The ability to predict the comfort of innovative seat designs using simulation tools, a library of human models with our team experience in CFD (Siemens Start-ccm+, Ansys Fluent and OpenFoam) and FEA (Ansys LS-DYNA, Simulia Abaqus, ESI Pam-Crash and Altair RADIOSS) simulation software with integrated Artificial Intelligence and Machine Learning for innovative design, can help manufacturers to create seats that provide a superior driving experience for their customers.
Read more...

1D/3D Coupled Simulation and Co-Simulation: Detailed Chemistry & Multiphase Flow Modeling with 1D Modeling

Enteknograte engineering team use advantage of CFD solver’s detailed chemistry, multiphase flow modeling, and other powerful features in coupling and co-simulation of CFD (Siemens Star-ccm+, AVL Fire, Ansys Fluent, Converge), 1D systems softwares (Matlab simulink, GT-Suite, Ricardo Wave allowing 1D/3D-coupled analyses to be performed effortlessly) and FEA software (Abaqus, Ansys, Nastran) for engine cylinder coupling, exhaust aftertreatment coupling, and fluid-structure interaction coupling simulation.
Read more...

Aerodynamics Simulation: Coupling CFD with MBD, FEA and 1D-System Simulation

Aerodynamics studies can cover the full speed range of low speed, transonic, supersonic and hypersonic flows as well as turbulence and flow control. System properties such as mass flow rates and pressure drops and fluid dynamic forces such as lift, drag and pitching moment can be readily calculated in addition to the wake effects. This data can be used directly for design purposes or as in input to a detailed stress analysis. Aerodynamics CFD simulation with sophisticated tools such as MSC Cradle, Ansys Fluent and Siemens Star-ccm+ allows the steady-state and transient aerodynamics of heating ventilation & air conditioning (HVAC) systems, vehicles, aircraft, structures, wings and rotors to be computed with extremely high levels of accuracy.
Read more...

eVTOL (Electric Vertical Take-Off and Landing) & UAM (Urban Air Mobility)

FEA & CFD Based Simulation for Airworthiness Certification, Aerodynamics, Aeroacoustics and Crashworthiness
The VTOL, eVTOL and UAM market is constantly changing and evolving, so maintaining a competitive edge both within the industry and supporting mission effectiveness requires significant research and development activities. Enteknograte offers the industry’s most complete simulation solution for Urban Air Mobility (UAM) and Vertical Take off and Landing (VTOL) aircrafts.
Read more...

Full Vehicle MultiBody Dynamics Simulation: Car Ride, Driveline, Engine and Tire MBD

With MultiBody Dynamic Simulation, you can perform various analyses on the vehicle to test the design of the different subsystems and see how they influence the overall vehicle dynamics. This includes both on- and off-road vehicles such as cars, trucks, motorcycles, buses, and land machinery. Typical full vehicle analysis includes handling, ride, driveline, comfort, and NVH. Automotive models are also used for Realtime applications (HiL, SiL, and MiL). We can also examine the influence of component modifications, including changes in spring rates, damper rates, bushing rates, and anti-roll bar rates, on the vehicle dynamics.
Read more...

Robots Dynamics & Performance Assessment: Coupled MBD & FEA Simulation-Based Design

Robot designers can increase the performance of their products by using Coupled FEA and MBD software such as Ansys, Abaqus, Simpack and MSC Adams multibody simulation (MBS) software to simulate the transient dynamic behavior of the complete robot mechanism and control algorithm.
Read more...

Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort. Our Finite Element (LS-Dyna, Ansys, Abaqus) and CFD simulation (Siemens Start-ccm+, Ansys Fluent , Ansys CFX and OpenFoam) for heat transfer analysis, thermal management, and virtual test process can save time and money in the design and development process, while also improving the thermal comfort and overall quality of the final product.
Read more...

Aerodynamic Noise Simulation

Sound caused by pressure oscillation of fluid, such as wind noise, and sound caused by resonance can be predicted using Large Eddy Simulation (LES) and a weak compressible flow model. A Fast Fourier Transform calculation can be used within the CFD software to predict the frequency of noise. Predicting the noise generated by complex flows from steady CFD solutions allows us to study the noise generated by turbulent flows from CFD solutions.
Read more...

Acoustics and Vibration: FEA and CFD for AeroAcoustics, VibroAcoustics and NVH Analysis

Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.
Read more...

Electromagnetic Multiphysics

FEA & CFD Based Simulation Including Thermal Stress, Fatigue, and Noise, Vibration & Harshness – NVH for Electric Motors
Enteknograte Finite Element Electromagnetic Field simulation solution which uses the highly accurate finite element solvers and methods such as Ansys Maxwell, Simulia Opera, Simulia CST, JMAG, Cedrat FLUX, Siemens MAGNET and COMSOL to solve static, frequency-domain, and time-varying electromagnetic and electric fields includes a wide range of solution types for a complete design flow for your electromagnetic and electromechanical devices in different industries.
Read more...

CFD and FEA in Civil Engineering: Seismic Design, Earthquake, Tunnel, Dam, Concrete Structures and Geotechnical Multiphysics Simulation

Enteknograte, offer a wide range of consulting services based on many years of experience using FEA and CFD: Coupled/Multiphysics problems: mechanics of porous media, spalling of concrete, freezing of ground and young hardening concrete Borehole stability problems Constitutive modeling of concrete Settlement damage on concrete and masonry constructions Pipelines, Earthquake analysis, Tunnel, Dam and Geotechnical Multiphysics Simulation.
Read more...

Marine and Shipbuilding Industry: Finite Element and CFD Based Simulation and Design

Our experience in Marine and Shipbuilding Industry include: Fatigue assessment studies, Modal and vibration analyses, Seakeeping and seaworthiness assessment, Maneuvering studies, Simulation and evaluation of systems, Damage surveys and investigations, Tie-down structural calculations and approval, Collision Investigation, modeling and analysis, Optimizing the Hydrodynamic Performance of Hull, Cavitation, Marine Vibro-Acoustic, Dynamic Integrity.
Read more...

In Silico Medical & Biomedical Device Testing: Finite Element & CFD Simulation and Design, Considering FDA & ASME V&V 40

Enteknograte Biomedical Engineers use FEA and CFD for simulating: Orthopedic products, Medical fasteners, Ocular modeling, Soft tissue simulation, Packaging, Electronic systems, Virtual biomechanics, Knee replacement, Human modeling, Soft tissue and joint modeling, Hospital equipment, Laser bonding, Ablation catheters, Dental implants, Mechanical connectors, Prosthetics, Pacemakers, Vascular implants, Defibrillators, Heart valve replacements.
Read more...

FEA and CFD Simulation for Aerospace Structures: Aerodynamics, Acoustics, Fatigue and Vibration, Thermal Analysis, Crash & Impact

Enteknograte provides a complete solution for aero-structure that addresses multi-disciplinary domains and engineering challenges combining CFD-FEA and 1D-3D multi-objective modeling: Complete wing simulation Dedicated composite simulation for aircraft: designing, analyzing and optimizing Composite material structure, Liquid Composite Molding, composite forming simulation for doors, wings, tails, Horizontal & vertical tailplane simulation, Moving part aerodynamics simulation, Nacelle aerodynamics simulation, Fatigue simulation of components: random vibro-acoustic loading, stress corrosion analysis and visualization
Read more...