FEA and CFD Based Simulation of Blast, Explosion & Fire

Contemporary design requirements associated with the protection of life and property often require consideration for blast effects resulting from either accidental or intentional explosions. Proper treatment of blast effects in structural systems requires specialized knowledge ranging from non-linear responses of structures to short-duration dynamic loading. Enteknograte’s Research engineers have extensive training and experience in managing all structural response considerations related to high-energy events, including blast design, explosion effects and mitigation, and finite clement modeling of blast events.

Design and validation of structures against blast loads are important for modern society in order to protect and secure its citizen. Since it is a challenge to validate and optimise protective structures against blast loads using full-scale experimental tests, we have to turn our attention towards advanced numerical tools like the finite element method. Several different finite element techniques can be used to describe the response of structures due to blast loads. Some of these are:

  • A pure Lagrangian formulation,
  • An initial Eulerian simulation (to determine the load) followed by a Lagrangian simulation (for the structural response) and
  • A hybrid technique that combines the advantages of Eulerian and Lagrangian methods to have a full coupling between the blast waves and the deformation of the structure.

Ideally, all blast simulations should be carried out using the fully coupled Eulerian-Lagrangian approach, but this may not be practical as the computational time increases considerably when going from a pure Lagrangian to a fully coupled Eulerian-Lagrangian simulation.

Enteknograte engineers simulate the Blast and Explosion with innovative CAE and virtual prototyping available in the non-linear structural codes LS-DYNA, Ansys Autodyn, and ABAQUS. Enteknograte Engineers can simulate any type of Blast and Explosion such as air blast, Underwater explosion (UNDEX) and Fragmentation due to blast to survey structural integrity in High Rate Loading Condition.
Our engineers have strong backgrounds in FEM(Finite Element Method) and complicated Multiphysics simulation that need deep knowledge and are fluent in the codes like LS-DYNA, Ansys and ABAQUS. We can develop special purpose user subroutine (UMAT) based on clients need to empower simulation environment to overcome any complicated problem in Blast and explosion load condition and user defined material constitutive equation for composites and special purpose Concrete including fracture mechanics of concrete in different strain rate.


Computational Fluid Dynamics for BLAST, Explosion and Fire simulation

Blast loads on buildings can be determined through the use of computational fluid dynamics (CFD) computer programs. The basic premise of CFD modeling is to discretize the building and surrounding area encompassing the blast source and adjacent obstacles into small regular cells of finite volume and then solve the governing equations for conservation of mass, momentum, and energy within each cell, taking into account the effects of adjacent cells.

Among other uses, CFD is utilized to simulate the propagation of blast waves in an environment of obstacles, to simulate pressures on unusually-shaped buildings, to simulate leakage through openings into buildings, to simulate interior explosions, and to simulate near-field explosion effects. Where applicable, CFD can be used as an alternative to the more commonly used empirical methods.

It should be understood that CFD results are sensitive to modeling techniques and the software used. CFD programs can employ a true first principles approach which includes turbulence modeling and detailed combustion, or a semi-empirical approach where simplifications of the explosion source are made, based on test data and guidance, to simplify and speed the analysis. Phenomological models are sometimes used to simplify the analysis by using numerical modeling of selected explosion phenomena to capture important features of blast propagation. As with most simulations, the greater the detail of the model, the greater the potential accuracy of the result.

By using Accurate mechanisms that representing every class of explosion and Fire important for this analysis and combination of advanced computational fluid dynamics (CFD) simulation tools such as KivaAnsys FluentAnsys ForteAVL Fire, Converge CFDSiemens Star-ccm+ enable Enteknograte engineering team to most detailed simulation of Fire and Explosion in industrial and defense projects.

Enteknograte Research Blast engineering and Explosion mitigation capabilities include:

  • The use of methods ranging from classical to nonlinear transient Finite Element Analysis (FEA)
  • Industrial equipment subjected to accidental explosions
  • Commercial curtain wall and window systems
  • New construction and retrofit of existing systems
  • Hardening of historical buildings
  • Inventive solutions for unusual applications

Blast, Explosion and Fire simulation for Offshore Engineering


The finite element method (FEM) as a computational tool has been extensively used in the offshore industry. It has been applied both for global and local simulation to study the behavior of the offshore structures.

Design procedures for Blast and Explosion analysis of offshore structures

Explosions, fires and other accidents are major risks in the offshore industry. Extreme loads arising for structural from accidents create a challenge engineers in the design of safe and weight-efficient structures. The use of design procedures based on state-of-the-art computational technology allows for weight-optimised structural designs that meet defined safety requirements.

Blast explosion fire cfd fea simulation ansys abaqus ls-dyna autodyn fluent star-ccm openfoam
Blast explosion fire cfd fea simulation ansys abaqus ls-dyna autodyn fluent star-ccm openfoam

FE modelling for offshore structures resistant to explosions and fires


Design procedures for creating offshore structures resistant to explosions and fires are normally based on the selection of design principles such as deterministic, probabilistic and risk-based design.

Methods used in designing structures that are resistant to explosions and fires include simplified methods and non-linear FE modelling and analysis. FE models involve accurate description of modelling techniques including modelling of structures, materials, and fire and explosion loads.

Assessment of fire and explosion loads


Enteknograte performs assessment of fire and explosion loads using state-of-the-art CFD software. Based on assessments of fire and explosion loads, deterministic or probabilistic models of loads are established for direct use in the design process for offshore installations.

Enteknograte carries out structural design verification as well as studies of structures subjected to fires and explosions. Complex FE models of structures are developed and used in response and structural strength simulations.

Blast-resistant walls and partitions for offshore structures


The following aspects are normally considered in order to achieve an optimum design of blast-resistant walls and partitions:

  • Definition of design explosion and fire loads
  • Establishment of the behavior of materials to be used for the design for high rate loads
  • Determination of the behavior and strength of walls by means of non-linear FE modelling
Blast explosion fire cfd fea simulation ansys abaqus ls-dyna autodyn fluent star-ccm openfoam
CFD and FEA consultant at Enteknograte

FEA and CFD Based Simulation

Reduce Development Cost

Enteknograte FEA service enables you to ensure the manufacturability of parts in the design phase

Advanced Technology

We resolve any type forming with the most detailed and accurate methodology

Test Before Manufacturing

Applied from early on in the part design phase, we can investigate the part manufacturability and performance
Blast explosion fire cfd fea simulation ansys abaqus ls-dyna autodyn fluent star-ccm openfoam
Blast explosion fire cfd fea simulation ansys abaqus ls-dyna autodyn fluent star-ccm openfoam
Ships and yachts acoustics design and optimization
High Velocity Impact on 3D Woven Fabric Composite Material-Design Optimization Abaqus, Ansys, Nastran LS-DYNA

Considering complexity and needs to have new procedure and constitutive equation, we must try to develop new FEA and CFD based software to overcome engineering challenges.

FEA and CFD based Programming needs experience and deep knowledge in both Solid or fluid mechanics and programming language such as Matlab, Fortran, C++ and Python.

Enteknograte’s engineering team use advanced methodology and procedure in programming and correct constitutive equation in solid, fluid and multiphysics environment based on our clients needs.

We use subroutine’s with programming languages such as Fortan, C and Python in CFD and FEA sofware such as Abaqus, Ansys, Fluent and Star-ccm+ to add new capability and Constitutive equation.

Tunnel Explosion Blast- Civil engineering FEA Finite element Simulation Enteknograte, Abaqus Ansys Ls-dyna Enteknograte4
Flutter effect simulation NLH Non-Linear Harmonic coupled CFD FEA two way FSI Turbomachinery Ansys Fluent Abaqus Siemens Star-ccm Numeca Fine Nastran
Aerodynamics Wind Turbine performance acoustic noise MDB CFD based Design and Optimization Openfoam Salome meca Ansys Fluent Siemens Star-ccm Numeca Fine Turbo

Together, we enable customers to reduce R&D costs and bring products to market faster, with confidence.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

A world-class consultancy for engineering, technology, innovation, our industry know-how and technical expertise is unrivalled.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

We use advanced virtual engineering tools, supported by a team of technical experts, to global partners in different industries.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

Our Software team is made up of developers, industry experts and technical consultants ensuring we can respond to each client’s individual needs

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us
metal forming simulation: ansys abaqus simufact forming
Metal Forming Simulation
Automotive Engineering: Powertrain Component Development, NVH, Combustion and Thermal simulation, Abaqus, Ansys, Ls-dyna, Siemens Star-ccm Enteknograte
Crash Test and Crashworthiness
Finite Element and CFD Based Simulation of Casting esi procast
Casting Simulation
Additive Manufacturing: FEA Based Design and Optimization with Abaqus, ANSYS and Nastran
Additive Manufacturing
MultiObjective Design and Optimization of Turbomachinery: Ansys Fluent, Numeca fine turbo, Siemens star-ccm+, simulia abaqus, Ls-dyna, Matlab
Design of Turbomachinery
CFD Heat Thermal simulation: Abaqus, Ansys Fluent, Star-ccm+, Ls-dyna, Matlab
CFD Heat Transfer
Fluid Structure Interaction FSI with Ansys Abaqus, Fluent Star-ccm Comsol
Hydrodynamics
Fluid Structure Interaction FEA CFD FSI Abaqus Ansys Comsol LS-dyna Wind Turbine Enteknograte
Fluid Strucure Interaction
Exhaust Acoustics and vibration: ESI va one, msc actran, abaqus, ansys, fluent, star-ccm , nastran
Acoustics & Vibration
Aerodynamic Simulation CFD Ansys Fluent Siemens Star-ccm+ Numeca xflow cradle
Aerodynamic Simulation
Ansys Fluent, Siemens Star-ccm+ Numeca fine , Avl Fire, Matlab
Combustion Simulation
Multiphase Flow Simulation Abaqus, Ansys, Fluent, Siemens Star-ccm+, Matlab
MultiPhase Flow Simulation
Fatigue Simulation Abaqus Ansys FE-Safe NCode Design Life FEA Finite Element Enteknograte
Creep & Fatigue
Multibody dynamics MBD Abaqus, Ansys Fluent, Star-ccm+, Ls-dyna, Matlab, fortran , C++, Python
Multi-Body Dynamics (MBD)
composite impact simulation , Comsol Abaqus, Ansys, Fluent, Siemens Star-ccm+, Aerospace and defenceMatlab, Fortran, Python CFD FEA
Composite Design
welding FEA Simulation Simufact Welding ESI Sysweld Abaqus Ansys Enteknograte
Welding Simulation
Optimization of Wind Turbine Composite Fracture Mechanic Damage Design Abaqus Ansys Finite Element CFD Enteknograte
Multi-Objective Optimization
CFD and FEA based Fortran, C++, Matlab and Python Programming
Advanced Fortran, C++, Matlab & Python Programming