CFD Simulation of Reacting Flows and Combustion: Engine and Gas Turbine

Knowledge of the underlying combustion chemistry and physics enables designers of gas turbines, boilers and internal combustion engines to increase energy efficiency and fuel flexibility, while reducing emissions.

Combustion System couples multiphysics simulations incorporating accurate physical models with an advanced chemistry solver to provide a complete end-to-end combustion chemistry simulation capability to optimize products that involve reacting flow. By using Accurate reaction mechanisms that representing every class of reaction important for combustion analysis and combination of advanced computational fluid dynamics (CFD) combustion simulation tools such as KivaAnsys FluentAnsys ForteAVL Fire, Converge CFDSiemens Star-ccm+ and System Modeling software such as Matlab Simulink and GT-Suite enable Enteknograte engineering team to reduce chemistry analysis time by orders of magnitude, virtually eliminating the bottleneck that chemistry integration produces during the simulation process. Faster time to solution makes it possible to spend more effort exploring design alternatives, conducting experiments, understanding where and why problems occur, and explaining observations without sacrificing accuracy.

Spray and Turbulence

Accurate spray and turbulence modeling is critical for predictive diesel and gasoline combustion simulations. In order to obtain results that are as realistic as possible, we use a wide variety of spray and turbulence modeling such as Reynolds-Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) turbulence models. 

For spray, simulate injection, breakup, vaporization, and other spray-related processes with detail are available. We can perform simulations that are dual fuel or multi-fuel and diesel and gasoline are not the only fuels that we can simulate. 

Becasue of deep concern to engine manufacturers are the constantly evolving emissions regulations, To help meet these regulations, we simulate soot and NOx via its detailed chemistry. Soot emissions from gas turbine combustors are increasingly becoming a critical design factor as new particulate matter emissions regulations.

internal combustion (IC) engines

Simulating internal combustion (IC) engines is challenging due to the complexity of the geometry, spatially and temporally varying conditions, and complex combustion chemistry in the engine. In a complex IC engine case, mesh resolution requirements to capture relevant flow features can vary significantly in time and space. This is a challenge that Adaptive Mesh Refinement can easily solve.

ENTEKNOGRATE: engineering simulation CFD & FEA with Ansys, Abaqus, Fluent, Siemens Star-ccm+ , Openfoam, Code-Aster, Fortran, Matlab, Python

Enteknograte engineering Combustion Simulation Service include:

Gas Turbine Combustion CFD Simulation: AVL Fire, Siemens Star-ccm+, Ansys Fluent and Converge

Gas turbine combustion can be a challenge to achieve accurate and reliable CFD simulation results. Computational efficiency requires appropriate mesh resolution and turbulence, spray, combustion, and emissions models that provide an appropriate level of detail. With using advanced and specilized CFD tools such as AVL Fire, Siemens Star-ccm+, Ansys Fluent and Converge, Enteknograte engineers can accurately predict important kinetically limited gas turbine phenomena such as ignition, flashback, and lean blow off. In addition, we can investigate the combined effects of chemistry and turbulence and optimize combustor performance parameters.

Enteknograte Simulatoin service for gas turbine combustion include:

  • Modeling of ignition and flame propagation with representation of the spark energy, volume, duration, and flame kernel formation and propagation
  • Spark modeling, combined with detailed chemistry
  • Effect of fuel/air ratio and burner spacing on relight propagation time
  • Simulating Lean blow off (LBO) including both gaseous and liquid fuels and maximize combustor performance factor for lean premixed systems to reducing flame temperatures and thus inhibiting NOx formation
  • Simulation Flashback ( flame speed of the fuel can overcome the flow velocity and flashback occurs and flashback ocuurs) of premixed fuel/air systems to invetsigate probability of  damage to equipment.
  • Spray modeling of liquid fuel simulations of  gas turbines including all steps of the spray process, including primary and secondary breakup, filming, splashing, coalescence, and collision.
  • Simulation of emissions of pollutants such as NOx, CO, and soot as a design parameters for gas turbines
  • Coupled combustion – CHT (conjugate heat transfer) simulation to predict combustor wall temperatures which captures flame shapes, cooling flows, and metal thermal conditions

Fuel Injectors and Spray CFD Simulation

CFD software such as AVL Fire, Siemens Star-ccm+, Ansys Fluent and Converge is well equipped to simulate fuel injectors and spray processes including liquid atomization, drop breakup, collision and coalescence, turbulent dispersion, spray cavitation, drop-wall interaction, and drop evaporation. 

Wide array of fuel injection simulation methodology, and robust and well-validated physical models allow us for accurate and computationally efficient simulation of these complex physical processes. In applications such as internal combustion engines, the fuel spray initiates, propagates, and dissipates very quickly on a very small spatial scale. The combustion process can be strongly affected by the exact nature of the fuel spray: droplet velocity, size, distribution, and physical attributes and for dynamically capture the important physics of the injection process, we need a high-density grid around the spray.

Enteknograte engineering team use advanced CFD tools for simulation and analysis of the injection of liquid fuel via physical models for blob injection, injection distribution, variable rate-shape, discharge coefficient, and hollow cone and solid cone sprays and simulating the mixing and evaporation of multi-component fuel sprays.

Exhaust Aftertreatment

Aftertreatment systems are a critical component to ensure emissions from engines and power generation equipment comply with environmental standards. CFD (computational fluid dynamics) simulations can be used as part of a rapid prototyping process to design systems that reduce NOx, CO, and particulate matter emissions with minimal efficiency and maintenance costs. Two of the main challenges in aftertreatment system design are maximizing the uniformity of flows upstream of catalysts and eliminating areas at risk for urea deposition. 

  • transient simulations for predict the uniformity of and velocity upstream of catalysts.
  • change the mixer locations or pipe configurations and invetstigate its effect on performance.
  • detailed NOx reduction and NH3 slip analysis with using coupled 1D surface chemistry tools such as GT-SUITE and advanced 3D CFD (computational fluid dynamics) simulation software for complex chemistry analysis inside the SCR catalyst brick.
  • Identifying where and when urea deposits will occur requires
  • Simulation of the spray-wall interaction, filming and wall cooling to indicate which films are at risk for urea deposit formation

Conjugate Heat Transfer for Predictive Fluid-Solid Heat Transfer

We simulate fluid flow and assume that the walls of the container were at a constant temperature or even adiabatic. In reality, however, there may be significant heat transfer between the fluid and its container, and thus our CFD simulation must be include this phenomenon. The internal combustion engine is one example of such an application. Using (CFD) combustion simulation tools such as Kiva, Ansys Fluent, Ansys Forte, AVL Fire, Converge, Siemens Star-ccm+ and System Modeling software such as Matlab Simulink and GT-Suite and FEA tools Such as Abaqus and Nastran enable Enteknograte engineering team for real world simulation of such complicated engineering problem with innovative use of computational tools and programming to add special ability into this softwares.

The internal combustion engine industry is moving toward simulating the entire system rather than independent components. Conjugate heat transfer (CHT)—the simultaneous prediction of heat transfer in both the fluid and solid portions of the domain—is of critical importance in a full-engine simulation. The accuracy of the predicted combustion in the cylinder is dependent on the temperature boundary conditions in the cylinder. By considering heat transfer in the metal components (e.g., the cylinder head, liner, piston, etc.) in the simulation, the cylinder wall no longer has a user-specified temperature, but instead has temperatures predicted as part of the system simulation.

1D/3D-coupled analyses and Co-Simulation

Enteknograte engineering team use advantage of CFD solver’s detailed chemistry, multiphase flow modeling, and other powerful features in coupling and co-simulation of CFD (Siemens Star-ccm+, AVL Fire, Ansys Fluent, Converge), 1D systems softwares (Matlab simulink, GT-Suite, Ricardo Wave allowing 1D/3D-coupled analyses to be performed effortlessly) and FEA software (AbaqusAnsysNastran) for engine cylinder coupling, exhaust aftertreatment coupling, and fluid-structure interaction coupling simulation.

Using mentioned methods, enable us for development of intake runner systems and investigate the ways of improving mixing, and reducing cylinder-to-cylinder variations in air/fuel ratios and exhaust gas recirculation (EGR). The location of EGR pipes and their design can be determined and the dynamics of the intake system can be optimized. This analysis approach can also be used on exhaust components. Exhaust runner lengths and catalyst cone designs can be investigated and lambda sensor locations can be determined. After-treatment simulations can also be performed looking at catalyst utilisation, light-off potential and selective catalytic reduction (SCR) system design.

Acoustic Engineering: Innovative use of Coupled CFD and FEA simulation Tools

Enteknograte as Engineering Simulation Laboratory, with deep knowledge in CFD and FEA and using advanced computational tools, supports customers and provides the latest NVH methodologies. Work together with our customer in Acoustic Engineering lead to NVH engineering section capabilities to develop individual solutions based on customers needs.

Enteknograte ‘s major NVH services are:

  • Engine and Powertrain NVH 
  • Vehicle and Powertrain NVH Simulation
  • Sound Engineering
  • NVH Software training and Methodology Development

The excellent know-how and innovative ideas as well as the strong link of the NVH team to other skill teams within Enteknograte, ensures a successful outcome for each and every project and generates an additional benefit for our customers.


Using Simulation to Optimize Reacting Flows and Combustion

From automobile engines to gas turbine generators, reacting flow and combustion is often the key to energy efficiency, emissions, lifespan, product yield, and other performance parameters. Simulation help look deeper into reacting flow and combustion issues to understand the complex chemical reactions, fluid flow, heat transfer, electrical performance, and other factors that determine the performance of your product. Simulation enables our engineers to evaluate more design alternatives more thoroughly than traditional prototype-based design and development methods.

They can confidently diagnose design alternatives to understand which potential design changes have the best change of improving product performance and evaluate enough design alternatives to get the design right before building a physical prototype. In such complicated Multiphysics environment including different solid and fluid and interaction between fields, enforce us to use advanced computational tools with innovative methods to capture real world simulation and optimize system to reduce cost and maximize performance considering short time for design in world competition.

Combination of advanced computational fluid dynamics (CFD) combustion simulation tools such as Kiva, Ansys Fluent, Ansys Forte, AVL Fire, Converge CFD, Siemens Star-ccm+ and System Modeling software such as Matlab Simulink and GT-Suite with sophisticated FEA tools such as Abaqus, Ansys, LS-DYNA and Nastran enable Enteknograte engineering team to solve any engineering problem with any level of complexity in real world simulation and optimize component and processes of the system in  real service load condition considering interaction between them.


Enteknograte Combustion CFD Ansys Fluent Siemens Star-ccm+ converge Cradle Numeca
CFD and FEA consultant at Enteknograte

FEA and CFD Based Simulation

NASA transonic rotor 37 Aerodynamics CFD Simulation Design Axial Compressor Ansys Fluent Siemens Star-ccm Numeca Fine Turbo MSC Nastran CFX
CFD FEA abaqus ansys fluent OPENFOAM CODE-ASTER star ccm siemens heeds autodyn ls-dyna finite element

Considering complexity and needs to have new procedure and constitutive equation, we must try to develop new FEA and CFD based software to overcome engineering challenges.

FEA and CFD based Programming needs experience and deep knowledge in both Solid or fluid mechanics and programming language such as Matlab, Fortran, C++ and Python.

Enteknograte’s engineering team use advanced methodology and procedure in programming and correct constitutive equation in solid, fluid and multiphysics environment based on our clients needs.

We use subroutine’s with programming languages such as Fortan, C and Python in CFD and FEA sofware such as Abaqus, Ansys, Fluent and Star-ccm+ to add new capability and Constitutive equation.

Enteknograte use Mathematical Methods and Models for Engineering Simulation. We, focuses on numerical modelling and algorithms development for the solution of challenging problems in several engineering sectors specialized in the development of software for the numerical discretization of partial differential equations, linear algebra, optimization, data analysis, High Performance Computing for several engineering applications.

Together, we enable customers to reduce R&D costs and bring products to market faster, with confidence.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

A world-class consultancy for engineering, technology, innovation, our industry know-how and technical expertise is unrivalled.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

We use advanced virtual engineering tools, supported by a team of technical experts, to global partners in different industries.

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

Our Software team is made up of developers, industry experts and technical consultants ensuring we can respond to each client’s individual needs

Do you need more information or want to discuss your project?

Reach out to us anytime and we’ll happily answer your questions
Contact us

Real world Simulation: Combination of experience and advanced analysis tools

Calling upon our wide base of in-house capabilities covering strategic and technical consulting, engineering, manufacturing ( Casting, Forming  and Welding) and analytical software development – we offer each of our clients the individual level of support they are looking for, providing transparency, time savings and cost efficiencies.
Enteknograte engineers participate in method development, advanced simulation work, software training and support. Over experiences in engineering consulting and design development, enables Enteknograte’s engineering team to display strong/enormous client focus and engineering experience. The Enteknograte team supports engineering communities to leverage CFD-FEA simulation softwares and methodologies. It leads to the creation of tailored solutions, aligned with the overall product development process of Enteknograte clients.

CAE Simulation: CFD, FEA, System Modeling, 1D-3D coupling

Integrated expertise covering every Equipment component analysis. From concept through to manufacture and product launch, and for new designs or Equipment modifications, we provide engineering simulation expertise across projects of all sizes. Simulation has become a key enabling factor in the development of highly competitive and advanced Equipment systems. CAE methods play a vital role in defining new Equipment concepts.

metal forming simulation: ansys abaqus simufact forming
Metal Forming Simulation
Automotive Engineering: Powertrain Component Development, NVH, Combustion and Thermal simulation, Abaqus, Ansys, Ls-dyna, Siemens Star-ccm Enteknograte
Crash Test and Crashworthiness
Finite Element and CFD Based Simulation of Casting esi procast
Casting Simulation
Additive Manufacturing: FEA Based Design and Optimization with Abaqus, ANSYS and Nastran
Additive Manufacturing
MultiObjective Design and Optimization of Turbomachinery: Ansys Fluent, Numeca fine turbo, Siemens star-ccm+, simulia abaqus, Ls-dyna, Matlab
Design of Turbomachinery
CFD Heat Thermal simulation: Abaqus, Ansys Fluent, Star-ccm+, Ls-dyna, Matlab
CFD Heat Transfer
Fluid Structure Interaction FSI with Ansys Abaqus, Fluent Star-ccm Comsol
Fluid Structure Interaction FEA CFD FSI Abaqus Ansys Comsol LS-dyna Wind Turbine Enteknograte
Fluid Strucure Interaction
Exhaust Acoustics and vibration: ESI va one, msc actran, abaqus, ansys, fluent, star-ccm , nastran
Acoustics & Vibration
Aerodynamic Simulation CFD Ansys Fluent Siemens Star-ccm+ Numeca xflow cradle
Aerodynamic Simulation
Ansys Fluent, Siemens Star-ccm+ Numeca fine , Avl Fire, Matlab
Combustion Simulation
Multiphase Flow Simulation Abaqus, Ansys, Fluent, Siemens Star-ccm+, Matlab
MultiPhase Flow Simulation
Fatigue Simulation Abaqus Ansys FE-Safe NCode Design Life FEA Finite Element Enteknograte
Creep & Fatigue
Multibody dynamics MBD Abaqus, Ansys Fluent, Star-ccm+, Ls-dyna, Matlab, fortran , C++, Python
Multi-Body Dynamics (MBD)
composite impact simulation , Comsol Abaqus, Ansys, Fluent, Siemens Star-ccm+, Aerospace and defenceMatlab, Fortran, Python CFD FEA
Composite Design
welding FEA Simulation Simufact Welding ESI Sysweld Abaqus Ansys Enteknograte
Welding Simulation
Optimization of Wind Turbine Composite Fracture Mechanic Damage Design Abaqus Ansys Finite Element CFD Enteknograte
Multi-Objective Optimization
CFD and FEA based Fortran, C++, Matlab and Python Programming
Advanced Fortran, C++, Matlab & Python Programming