Full Vehicle MultiBody Dynamics Simulation: Car Ride, Driveline, Engine and Tire MBD

FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization

With MultiBody Dynamic Simulation, you can perform various analyses on the vehicle to test the design of the different subsystems and see how they influence the overall vehicle dynamics. This includes both on- and off-road vehicles such as cars, trucks, motorcycles, buses, and land machinery. Typical full vehicle analysis includes handling, ride, driveline, comfort, and NVH. Automotive models are also used for Realtime applications (HiL, SiL, and MiL). We can also examine the influence of component modifications, including changes in spring rates, damper rates, bushing rates, and anti-roll bar rates, on the vehicle dynamics.

MSC adams abaqus ansys full vehicle analysis includes handling, ride, driveline, comfort, and NVH.

Car Ride simulation 

Car Ride simulation allow virtual ride and comfort engineering up-front in the vehicle design process includes the required elements, models, and event definitions for building, testing, and post processing within the ride frequency regime.

Driveline MBD Simulation 

Driveline MBD simulation provides engineers and analysts with combination of specialized tools including FEA and MBD software such as Ansys, Abaqus, Simpack and MSC Adams for modeling and simulating driveline components and studying the dynamic behavior of the entire driveline during different operating conditions. It can also be used to explore the interaction between the driveline and chassis components, such as suspensions, steering system, brakes, and the vehicle body.

  • Invetstigating the interaction between driveline and chassis components, such as suspensions, steering system, brakes, and the vehicle body
  • Apply a specific torque to driveline model
  • Define a slope of road to study the performance of driveline
  • Alter the driveline geometry and analyze the driveline again to evaluate the effects of the alterations
Powertrain Engineering: Providing design, development, and simulation on components, engines, transmissions, and vehicles, we also support R&D and simulation for fuel mixing, combustion, filtration, and fluid flow analysis.

MBD for Engine Analysis

Coupled using of FEA and MBD software such as Ansys, Abaqus, Simpack and MSC Adams simplifies the modeling and analysis of the major components of internal combustion engine systems, such as valves, pistons and crankshafts. This allows us to create and analyze highly realistic engine models quickly and easily including Valve, Piston, Piston Pin, Connecting Rod, Engine Block, Liner Connector, Engine Mount, crank train and crank shaft.

engine Driveline msc adams machinery mechanical system design MBD Simpack FEA simulation abaqus ansys hexagon
MSC adams abaqus ansys full vehicle analysis includes handling, ride, driveline, comfort, and NVH.

Tire MultiBody Dynamics Simulation

Using high-fidelity tire model that can be used to simulate maneuvers such as braking, steering, acceleration, free-rolling, or skidding lets us to model the forces and torques that act on a tire as it moves over roadways or irregular terrain for investigating vehicle-handling, ride and comfort, and vehicle durability analyses.

  • Explore the performance of design and refine design before building and testing a physical prototype
  • Analyze design changes much faster and at a lower cost than physical prototype testing would require
  • Model multi-axle, multi-subsystem assemblies
  • Perform component, subsystem, and full-vehicle analyses
  • Explore multiple what if design scenarios
MSC adams abaqus ansys full vehicle analysis includes handling, ride, driveline, comfort, and NVH.

WE WORK WITH YOU

We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.

Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae(Simufact, Digimat, Nastran, MSC APEX, Actran Acoustic solver), ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.
Hexagon MSC Software© CoBrand RGB PRIMARY Logo

Enteknograte Engineering team use advanced simulation tools for MBD analysis consultant such as MSC ADAMS, Simulia SIMPACK with combined/coupled manner with FEA and System modeling sofware such as ANSYS, Abaqus, MSC NASTRAN, MSC MARC and Matlab and MSC Easy5 for System modeling for real world simulation of motion and MultiBody Dynamics:

  • Rigid and flexible multibody systems
  • Sensitivity analysis
  • Vibration analysis
  • Vehicle design & testing
  • Coupled control/mechanical system analysis
  • Kinematics and kinetics
  • Contact and friction
  • Loads and displacement
  • Durability and life-cycle analysis
  • Fracture or fatigue calculations
  • Kinetic, static, and dissipative energy distribution
  • Vehicular cornering, steering, quasi-static, and straight-line analysis
  • Control system analysis
ATV hitting a curb msc adams marc co-simulation CFD MBD FEA
Vehicle battery scratched by obstacle adams msc marc co-simulation FEA MBD fluid-structure Interaction
Crosswind-Impact-on-Vehicle-Dynamics adams cradle adams cradle co-simulation CFD FEA MBD fluid-structure Interaction
atv excavator MSC adams mbd simulation full vehicle abaqus ansys hexagon
Everything from acoustics to multibody dynamics (MBD), to CFD, to structural analysis, and explicit crash dynamics

Full Vehicle MultiBody Dynamics Simulation: Car Ride, Driveline, Engine and Tire MBD

With MultiBody Dynamic Simulation, you can perform various analyses on the vehicle to test the design of the different subsystems and see how they influence the overall vehicle dynamics. This includes both on- and off-road vehicles such as cars, trucks, motorcycles, buses, and land machinery. Typical full vehicle analysis includes handling, ride, driveline, comfort, and NVH. Automotive models are also used for Realtime applications (HiL, SiL, and MiL). We can also examine the influence of component modifications, including changes in spring rates, damper rates, bushing rates, and anti-roll bar rates, on the vehicle dynamics.
Read more...

Robots Dynamics & Performance Assessment: Coupled MBD & FEA Simulation-Based Design

Robot designers can increase the performance of their products by using Coupled FEA and MBD software such as Ansys, Abaqus, Simpack and MSC Adams multibody simulation (MBS) software to simulate the transient dynamic behavior of the complete robot mechanism and control algorithm.
Read more...

Coupled Multibody Dynamics & Control Systems

Controls are essential to operating systems such as air management systems, flight controls, and landing gear extension/retraction systems. Controls simulation allows us to predict the performance of controls subjected to numerous configurations. With controls simulation, the complexity of a controls system can be expressed in an easy to understand schematic form and the necessary differential equations used to define the system can be solved.
Read more...

Multibody Dynamics Simulation of Complicated Machinery & Mechanical Drive Systems

Enteknograte engineers use MBD simulation to evaluate and manage the complex interactions relating to motion, structures, actuation, and controls to better optimize product designs for performance, safety, and comfort. Building functional virtual prototypes of machinery components and systems early in the design cycle, enable our engineering team to perform a series of virtual tests before committing to building a physical prototype.
Read more...

Multibody Dynamics & NVH (Noise, vibration, and harshness)

Noise, vibration, and harshness (NVH) are critical factors in the performance of many mechanical designs but designing for optimum NVH can be difficult. While strength and durability limits are being pushed further and further, requirements for noise reduction are becoming more stringent. In addition, focus is increasingly being placed on transmission and powertrain noise because other sources could be reduced meanwhile.
Read more...

Electromagnetic Multiphysics

FEA & CFD Based Simulation Including Thermal Stress, Fatigue, and Noise, Vibration & Harshness – NVH for Electric Motors
Enteknograte Finite Element Electromagnetic Field simulation solution which uses the highly accurate finite element solvers and methods such as Ansys Maxwell, Simulia Opera, Simulia CST, JMAG, Cedrat FLUX, Siemens MAGNET and COMSOL to solve static, frequency-domain, and time-varying electromagnetic and electric fields includes a wide range of solution types for a complete design flow for your electromagnetic and electromechanical devices in different industries.
Read more...

NVH & Acoustics for Hybrid & Electric Vehicles

In NVH Engineering and simulation of Hybrid/Electric Vehicles, the noise from tire, wind or auxiliaries, which consequently become increasingly audible due to the removal of the broadband engine masking sound, should be studied. New noise sources like tonal sounds emerge from the electro-mechanical drive systems and often have, despite their low overall noise levels, a high annoyance rating. Engine/exhaust sounds are often used to contribute to the “character” of the vehicle leads to an open question how to realize an appealing brand sound with EV.
Read more...

eVTOL (Electric Vertical Take-Off and Landing) & UAM (Urban Air Mobility)

FEA & CFD Based Simulation for Airworthiness Certification, Aerodynamics, Aeroacoustics and Crashworthiness
The VTOL, eVTOL and UAM market is constantly changing and evolving, so maintaining a competitive edge both within the industry and supporting mission effectiveness requires significant research and development activities. Enteknograte offers the industry’s most complete simulation solution for Urban Air Mobility (UAM) and Vertical Take off and Landing (VTOL) aircrafts.
Read more...

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.
Read more...

1D/3D Coupled Simulation and Co-Simulation: Detailed Chemistry & Multiphase Flow Modeling with 1D Modeling

Enteknograte engineering team use advantage of CFD solver’s detailed chemistry, multiphase flow modeling, and other powerful features in coupling and co-simulation of CFD (Siemens Star-ccm+, AVL Fire, Ansys Fluent, Converge), 1D systems softwares (Matlab simulink, GT-Suite, Ricardo Wave allowing 1D/3D-coupled analyses to be performed effortlessly) and FEA software (Abaqus, Ansys, Nastran) for engine cylinder coupling, exhaust aftertreatment coupling, and fluid-structure interaction coupling simulation.
Read more...

Finite Element Simulation of Crash Test and Crashworthiness with LS-Dyna, Abaqus and PAM-CRASH

Crashworthiness focuses on occupant protection to reduce the number of fatal and serious injuries. This research is responsible for developing and upgrading test procedures for evaluating motor vehicle safety. Crashworthiness research encompasses new and improved vehicle design, safety countermeasures and equipment to enhance occupant safety. Finite Element Analysis (FEA) has been the trend in virtual crash design over the last decade. The predictive capabilities of FEA allow engineers to fully understand a crash event in a virtual environment, thus limiting the number of physical tests that need to be executed and thus saving costs.
Read more...

Acoustics and Vibration: FEA and CFD for AeroAcoustics, VibroAcoustics and NVH Analysis

Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.
Read more...

Aerodynamics Simulation: Coupling CFD with MBD, FEA and 1D-System Simulation

Aerodynamics studies can cover the full speed range of low speed, transonic, supersonic and hypersonic flows as well as turbulence and flow control. System properties such as mass flow rates and pressure drops and fluid dynamic forces such as lift, drag and pitching moment can be readily calculated in addition to the wake effects. This data can be used directly for design purposes or as in input to a detailed stress analysis. Aerodynamics CFD simulation with sophisticated tools such as MSC Cradle, Ansys Fluent and Siemens Star-ccm+ allows the steady-state and transient aerodynamics of heating ventilation & air conditioning (HVAC) systems, vehicles, aircraft, structures, wings and rotors to be computed with extremely high levels of accuracy.
Read more...

Vehicle Thermal Management Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort and covers a wide range of Industries.
Read more...

Finite Element Analysis of Durability and Fatigue Life

Vibration Fatigue, Creep, Welded Structures Fatigue, Elastomer and Composite Fatigue with Ansys Ncode, Simulia FE-Safe, MSC CAEFatigue, FEMFAT
Durability often dominates development agendas, and empirical evaluation is by its nature time-consuming and costly. Simulation provides a strategic approach to managing risk and cost by enabling design concepts or design changes to be studied before investment in physical evaluation. The industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life and FEMFAT used to calculate fatigue life of multiaxial, welds, short-fibre composite, vibration, crack growth, thermo-mechanical fatigue.
Read more...

Multibody Dynamics

Coupling of Multibody Dynamics & FEA: Robots Dynamics, Control Systems, Advanced Machinery, Full Vehicle MBD and NVH
From automobiles and aircraft to washing machines and assembly lines - moving parts generate loads that are often difficult to predict. Complex mechanical assemblies present design challenges that require a dynamic system-level analysis to be met. Accurate modeling can require representations of various types of components, like electronic controls systems and compliant parts and connections, as well as complicated physical phenomena like vibration, friction and noise. MBD analysis enables us to meet these challenges by quickly evaluating and improving designs for important characteristics like performance, safety and comfort.
Read more...

Additive Manufacturing and 3D Printing

FEA Based Design and Optimization with Simufact, Abaqus, ANSYS and MSC Apex for powder bed fusion (PBF), directed energy deposition (DED) and binder jetting processes
With additive manufacturing, the design is not constrained by traditional manufacturing requirements and specific number of design parameters. Nonparametric optimization with new technologies such as Artificial Intelligence in coupled with Finite Element method, can be used to produce functional designs with the least amount of material. Additive manufacturing simulations are key in assessing a finished part’s quality. Here at Eneteknograte, dependent of the problem detail, we use advanced tools such as MSC Apex Generative Design, Simufact Additive, Digimat, Abaqus and Ansys.
Read more...

Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort. Our Finite Element (LS-Dyna, Ansys, Abaqus) and CFD simulation (Siemens Start-ccm+, Ansys Fluent , Ansys CFX and OpenFoam) for heat transfer analysis, thermal management, and virtual test process can save time and money in the design and development process, while also improving the thermal comfort and overall quality of the final product.
Read more...