MSC Dytran: Explicit Transient Dynamic Solution for Crash, Impact, Blast, Explosion and Fluid-Structure Interaction

Dytran is an explicit finite element analysis (FEA) solution for simulating short-duration events like impact and crash, and to analyze the complex nonlinear behavior that structures undergo during these events. Dytran enables you to study the structural integrity of designs to ensure that final products stand a better chance of meeting customer safety, reliability, and regulatory requirements. Dytran delivers a structural, material flow and coupled FSI analysis capabilities in a single package. Dytran uses a unique coupling feature that enables integrated analysis of structural components with fluids and highly deformed materials in one continuous simulation.

Accurate, Robust Analysis for your Industry

Dytran’s accuracy has been proven through correlation with physical experiments. Dytran helps engineers predict how a prototype would respond to a variety of real-world dynamic events and to examine potential causes for product failure. Some industry application examples include:

  • Aerospace Applications: Aircraft ditching, fuel tank sloshing and rupture, bird strike simulation, engine blade containment, aircraft crashworthiness, seat design and safety, aircraft and cargo containment hardening
  • Automotive Applications: Airbag design and occupant safety (out of position studies), dummy modeling and seat design, vehicle impact and crash testing, tire hydroplaning, fuel tank sloshing and rupture
  • Military and Defense Applications: Shaped charge simulation and weapons design, projectile penetration and perforation of targets, hydrodynamic ram (HRAM), ship collision, underwater shock explosion (UNDEX), blast resistance and survivability
  • Other Industrial Applications: Bottle and container design, paper feeding, drop testing, sports equipment impact analysis, packaging design

Unique Combination of Simulation Technologies

Dytran’s innovative ability to model the interaction of adaptive, multiple Eulerian domains around coupling surfaces as they move and deform gives you the power to analyze complex FSI scenarios that are often too difficult or impossible to simulate with other software tools, such as:

  • Multiple objects impacting multi-layered structures (For example, determining the effect of multiple bird strikes against aircraft structures while in flight)
  • Catastrophic structural failure with fluid leakage or penetration (For example, examining a vehicle’s ability to withstand a crash that would result in fuel tank crushing and fuel spillage)
  • Fluid filling and sloshing within an enclosed volume (For example, designing baffles to optimize NVH characteristics for fuel tanks)
truck crash Car vehicle Finite Element Simulation Crash Test MSC dytran Crashworthiness Ls-Dyna Abaqus PAM-CRASH
Occupant restraint system Car and vehicle Finite Element Simulation Crash Test MSC dytran Crashworthiness Ls-Dyna Abaqus PAM-CRASH

Dytran for Maximizing Productivity

Through continuous enhancements, Dytran has delivered productivity improving capabilities with each new release. Some of the recent technology enhancements include:

  • Distributed Memory Parallel capability of Eulerian solver and coupling surface computation for improved performance gains in FSI applications
  • Cyclic flow boundary to help reduce model sizes in simulation of turbines, flow between rotating structures and pipe flow problems
  • Body forces that can be applied on different materials inside a particular region defined by a box, sphere, cylinder or a surface
  • Graded Mesh for Euler: With graded meshes, one side of an Euler element can connect to the sides of several other Euler elements, i.e. to “glue” a fine mesh to a coarse mesh, providing an effective modeling flexibility, especially the ones that are only locally non-uniform. This capability will benefit important FSI applications such as airbags/sloshing and blast analysis
  • Non-Uniform Euler Mesh: Capability to allow non-uniform Euler meshing by defining a biased ratio between smallest and large mesh-sizes, thus providing another way for modeling flexibility. Besides, both Graded Mesh and Non-Uniform Mesh for Euler can be used together. This is useful with UNDEX simulations
  • Speed up of Axi-symmetric mesh models through time step determination based on the axial and radial directions
  • Naval shipping and UNDEX applications can now use a special boundary treatment defined based on hydrostatic pressure profile

Transient Structural Analysis (Crash/Impact)

Dytran uses explicit technology to solve transient dynamic problems. Solid, shell, beam, membrane and connectors and rigid elements can be used to model the structures. A wide range of material models are available to model the nonlinear response and failure. These include linear elasticity, yield criteria, equations of state, failure and spall models, explosive burn models and composite materials to name a few.

Contact surfaces allow structural components to interact with each other or with rigid geometric structures. This interaction may include frictionless contact, sliding with frictional effects and separation. Single surface contact can be used to model buckling of structures where material may fold onto itself.

airbag Occupant restraint system Car vehicle Finite Element Simulation Crash Test MSC dytran Crashworthiness Ls-Dyna Abaqus PAM-CRASH
Hydroplaning Aquaplaning tire CFD sph Msc Cradle Ansys Fluent Siemens Star-ccm+ abaqus dytran

Fluid-structure Interaction

Eulerian solvers are typically used for solving fluid problems, while Lagrangian solvers are used to solve structural problems. However, many real world situations need to account interactions between fluids and solids – deforming solids affecting fluid flow and fluid flow deforming a structure. Problems like fluid sloshing in a tank, airbag inflation, hydroplaning etc. can only solved with fluid-structure interaction accounted for.

Both Lagrangian and Eulerian solvers are available in Dytran to enable modeling of both structures and fluids in a single model and simulate the interaction between them. Interaction between the fluids and structures is achieved through a coupling surface created on structures (Lagrangian domain).

WE WORK WITH YOU

We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.

Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae(Simufact, Digimat, Nastran, MSC APEX, Actran Acoustic solver), ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.

Crash Test and Crashworthiness

Finite Element Simulation of Crash Test and Crashworthiness with LS-Dyna, Abaqus and PAM-CRASH Including Airbag & Seat Belt Effectiveness, Trucks, Bus and eVTOL.
Current requirements for structural design of U.S. Army aircraft pertaining to crash resistance are discussed. Principles for crash-resistant design are presented in detail for the landing gear and fuselage subject to a range of crash conditions, including impacts that are primarily longitudinal, vertical or lateral in nature and those that involve more complicated dynamic conditions, such as rollover.
Read more...

Blast Resistance with Protection Against Ballistic Attacks

FEA (Finite Element Analysis) & CFD Based Simulation of Blast, Explosion & Fire
Enteknograte engineers simulate the Blast and Explosion with innovative CAE and virtual prototyping available in the non-linear structural codes MSC Dytran, LS-DYNA, Ansys Autodyn, and ABAQUS. Enteknograte Engineers can simulate any type of Blast and Explosion such as air blast, Underwater explosion (UNDEX) and Fragmentation due to blast to survey structural integrity in High Rate Loading Condition.
Read more...

Seat Design: Finite Element and CFD Simulation for Static & Dynamic Comfort, Whiplash, Acoustic & Thermal Comfort, Crash Test

Simulation Based Design can help us to ensure the right occupant posture, which is essential for safety, Static and Dynamic Comfort, for example by predicting the H-Point and incorporating whiplash, thermal and Acoustic comfort simulation. The ability to predict the comfort of innovative seat designs using simulation tools, a library of human models with our team experience in CFD (Siemens Start-ccm+, Ansys Fluent and OpenFoam) and FEA (Ansys LS-DYNA, Simulia Abaqus, ESI Pam-Crash and Altair RADIOSS) simulation software with integrated Artificial Intelligence and Machine Learning for innovative design, can help manufacturers to create seats that provide a superior driving experience for their customers.
Read more...

Structural Dynamics: Coupling CFD, MBD, FEA and 1D Systems Simulation Software

We have experience developing complex high fidelity finite element models to facilitate predictive virtual testing including wings, engines and aircraft interiors. In addition, we could simulate vulnerability events such as: Bird strike, Tire burst, Ditching, Passenger safety and Impact events.
Read more...

Finite Element Welding Simulation: RSW, FSW, Arc, Electron and Laser Beam Welding

Enteknograte engineers simulate the Welding with innovative CAE and virtual prototyping available in the non-linear structural codes such as LS-DYNA, Ansys, Comsol, Simufact Welding, ESI SysWeld and ABAQUS. The Finite element analysis of welding include Arc Welding, laser Beam Welding, RSW, FSW and transfer the results of welding simulation for next simulation like NVH, Crash test, Tension, Compression and shear test and fatigue simulation. We can develop special purpose user subroutine (UMAT) based on clients need to empower simulation environment to overcome any complicated problem in heat load condition, phase change and user defined material constitutive equation.
Read more...

Metal Forming Simulation: FEA Based Design and Optimization

Using advanced Metal Forming Simulation methodology and FEA tools such as Ansys, Simufact Forming, Autoform, FTI Forming, Ls-dyna and Abaqus for any bulk material forming deformation, combining with experience and development have made Enteknograte the most reliable consultant partner for large material deformation simulation: Closed die forging Open die forging processes such as cogging, saddling, and other GFM, processes Rolling for long products, Extrusion, Ring Rolling, Cross Wedge Rolling and Reducer Rolling for pre-forming Cold forming, Sheet metal forming.
Read more...

Finite Element Analysis of Durability and Fatigue Life

Vibration Fatigue, Creep, Welded Structures Fatigue, Elastomer and Composite Fatigue with Ansys Ncode, Simulia FE-Safe, MSC CAEFatigue, FEMFAT
Durability often dominates development agendas, and empirical evaluation is by its nature time-consuming and costly. Simulation provides a strategic approach to managing risk and cost by enabling design concepts or design changes to be studied before investment in physical evaluation. The industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life and FEMFAT used to calculate fatigue life of multiaxial, welds, short-fibre composite, vibration, crack growth, thermo-mechanical fatigue.
Read more...

Simulation for Quenching: Virtual Heat Treatment Optimization​

Quenching is used in the production of cast or otherwise-produced metal components. In particular, immersion or direct quenching processes are widely adopted procedures in the automotive and aerospace industries to minimize the formation of undesirable thermal and transformational gradients, which may lead to increased distortion and cracking. The proposed method for simulation must accurately predict real-time quenching effects, local temperature gradients and the overall cooling history of complex quenched components.
Read more...

Casting: Finite Element and CFD Simulation Based Design

Using Sophisticated FEA and CFD technologies, Enteknograte Engineers can predict deformations and residual stresses and can also address more specific processes like investment casting, semi-solid modeling, core blowing, centrifugal casting, Gravity Casting (Sand / Permanent Mold / Tilt Pouring), Low Pressure Die Casting (LPDC), High Pressure Die Casting (HPDC), Centrifugal Casting and the continuous casting process. The metal casting simulation using FEA and CFD based technologies, enable us to address residual stresses, part distortion, microstructure, mechanical properties and defect detection.
Read more...

Additive Manufacturing and 3D Printing

FEA Based Design and Optimization with Simufact, Abaqus, ANSYS and MSC Apex for powder bed fusion (PBF), directed energy deposition (DED) and binder jetting processes
With additive manufacturing, the design is not constrained by traditional manufacturing requirements and specific number of design parameters. Nonparametric optimization with new technologies such as Artificial Intelligence in coupled with Finite Element method, can be used to produce functional designs with the least amount of material. Additive manufacturing simulations are key in assessing a finished part’s quality. Here at Eneteknograte, dependent of the problem detail, we use advanced tools such as MSC Apex Generative Design, Simufact Additive, Digimat, Abaqus and Ansys.
Read more...

Rotors Aerodynamic Simulation via Coupled FEA (MBD)/CFD Method: Aeroelastic Behavior Assessment

The blade vortex interactions (BVI) generate high load peaks and represent one of the main noise sources of a helicopter. In contrast to the rotors the flow around the fuselage is basically incompressible and many helicopters have a blunt body with large flow separations behind the fuselage. Depending on the flight conditions there may be strong interactions between main and tail rotors, rotor head, fuselage and the empennage, e.g. the tail shake phenomenon which is mainly caused by separations behind the rotor head.
Read more...

eVTOL (Electric Vertical Take-Off and Landing) & UAM (Urban Air Mobility)

FEA & CFD Based Simulation for Airworthiness Certification, Aerodynamics, Aeroacoustics and Crashworthiness
The VTOL, eVTOL and UAM market is constantly changing and evolving, so maintaining a competitive edge both within the industry and supporting mission effectiveness requires significant research and development activities. Enteknograte offers the industry’s most complete simulation solution for Urban Air Mobility (UAM) and Vertical Take off and Landing (VTOL) aircrafts.
Read more...

Acoustics and Vibration: FEA and CFD for AeroAcoustics, VibroAcoustics and NVH Analysis

Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.
Read more...

FEA Based Composite Material Design and Optimization: MSC Marc, Abaqus, Ansys, Digimat and LS-DYNA

Finite Element Method and in general view, Simulation Driven Design is an efficient tool for development and simulation of Composite material models of Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Nanocomposite, Rubber and Elastomer Composites, woven Composite, honeycomb cores, reinforced concrete, soil, bones ,Discontinuous Fiber, UD Composit and various other heterogeneous materials.
Read more...

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.
Read more...

Aerodynamics Simulation: Coupling CFD with MBD, FEA and 1D-System Simulation

Aerodynamics studies can cover the full speed range of low speed, transonic, supersonic and hypersonic flows as well as turbulence and flow control. System properties such as mass flow rates and pressure drops and fluid dynamic forces such as lift, drag and pitching moment can be readily calculated in addition to the wake effects. This data can be used directly for design purposes or as in input to a detailed stress analysis. Aerodynamics CFD simulation with sophisticated tools such as MSC Cradle, Ansys Fluent and Siemens Star-ccm+ allows the steady-state and transient aerodynamics of heating ventilation & air conditioning (HVAC) systems, vehicles, aircraft, structures, wings and rotors to be computed with extremely high levels of accuracy.
Read more...

CFD and FEA in Civil Engineering: Seismic Design, Earthquake, Tunnel, Dam, Concrete Structures and Geotechnical Multiphysics Simulation

Enteknograte, offer a wide range of consulting services based on many years of experience using FEA and CFD: Coupled/Multiphysics problems: mechanics of porous media, spalling of concrete, freezing of ground and young hardening concrete Borehole stability problems Constitutive modeling of concrete Settlement damage on concrete and masonry constructions Pipelines, Earthquake analysis, Tunnel, Dam and Geotechnical Multiphysics Simulation.
Read more...

Marine and Shipbuilding Industry: Finite Element and CFD Based Simulation and Design

Our experience in Marine and Shipbuilding Industry include: Fatigue assessment studies, Modal and vibration analyses, Seakeeping and seaworthiness assessment, Maneuvering studies, Simulation and evaluation of systems, Damage surveys and investigations, Tie-down structural calculations and approval, Collision Investigation, modeling and analysis, Optimizing the Hydrodynamic Performance of Hull, Cavitation, Marine Vibro-Acoustic, Dynamic Integrity.
Read more...

In Silico Medical & Biomedical Device Testing: Finite Element & CFD Simulation and Design, Considering FDA & ASME V&V 40

Enteknograte Biomedical Engineers use FEA and CFD for simulating: Orthopedic products, Medical fasteners, Ocular modeling, Soft tissue simulation, Packaging, Electronic systems, Virtual biomechanics, Knee replacement, Human modeling, Soft tissue and joint modeling, Hospital equipment, Laser bonding, Ablation catheters, Dental implants, Mechanical connectors, Prosthetics, Pacemakers, Vascular implants, Defibrillators, Heart valve replacements.
Read more...

FEA and CFD Simulation for Aerospace Structures: Aerodynamics, Acoustics, Fatigue and Vibration, Thermal Analysis, Crash & Impact

Enteknograte provides a complete solution for aero-structure that addresses multi-disciplinary domains and engineering challenges combining CFD-FEA and 1D-3D multi-objective modeling: Complete wing simulation Dedicated composite simulation for aircraft: designing, analyzing and optimizing Composite material structure, Liquid Composite Molding, composite forming simulation for doors, wings, tails, Horizontal & vertical tailplane simulation, Moving part aerodynamics simulation, Nacelle aerodynamics simulation, Fatigue simulation of components: random vibro-acoustic loading, stress corrosion analysis and visualization
Read more...