Additive Manufacturing and 3D Printing : FEA Based Design and Optimization with Simufact, Abaqus, ANSYS and MSC Apex

FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization

With additive manufacturing, the design is not constrained by traditional manufacturing requirements and specific number of design parameters. Nonparametric optimization with new technologies such as Artificial Intelligence in coupled with Finite Element method, can be used to produce functional designs with the least amount of material. Additive manufacturing simulations are key in assessing a finished part’s quality. Here at Enteknograte, dependent of the problem detail, we use advanced tools such as MSC Apex Generative Design, Simufact Additive, Digimat, Abaqus and Ansys.

Additive manufacturing, also known as 3D printing, is a method of manufacturing parts typically from powder or wire using a layer by layer approach. Interest in metal based additive manufacturing processes has taken off in the past few years. The three-major metal additive manufacturing processes in use today are powder bed fusion (PBF), directed energy deposition (DED) and binder jetting processes.
 Enteknograte Engineering Team propose special simulation tools for each of these processes. With additive manufacturing, the design is not constrained by traditional manufacturing requirements and specific number of design parameters. Nonparametric optimization with new technologies such as Artificial Intelligence in coupled with Finite Element method, can be used to produce functional designs with the least amount of material.
 
 Additive manufacturing simulations are key in assessing a finished part’s quality. The physics behind the manufacturing process can be accurately recreated in software platforms, and enabling end to end digitalization and so on, factors which will be crucial in the service life of a part.

Our solution’s functionality helps you to answer challenges in Metal AM (Additive Manufacturing) Finite Element Simulation-based design and Optimization:

  • Identify the best build orientation
  • Determine and compensate final part distortionGenerate and optimize support structures
  • Process window pre-scanning tool
  • Powder coating
  • Melt pool shape and dimensions
  • Consolidated material porosity
  • Surface roughness
  • Thermal history as a function of deposition strategy
  • Residual stresses
  • Distortion during build process and after release
  • Identify manufacturing issues such as cracks, layer offsets, recoater contact
  • Predict the influence of several components in the build space
  • Identify cold and hot spots due to thermal/thermo-mechanical simulation
  • Examine conditions of highly elevated temperatures and pressures – HIP proces
additive manufacturing am Finite Element simulation Simufact abaqus ansys MSC Marc Digimat
satellite MSC Apex Generative Design additive manufacturing am Finite Element simulation Simufact abaqus ansys MSC Marc Digimat

Optimizing the design parameters for additive manufacturing

FEA Based Simulation enable our engineering team to gain insight into the microscale meltpool phenomena by performing full factorial studies with various process parameters for determine the best process parameters for any machine/material combination, and ensures the achievement of the highest integrity parts, as well as the expected microstructure and physical properties:

  • Optimize and fine-tune their machine and material parameters.
  • Develop new metal powders and metal AM (Additive Manufacturing ) materials and material specifications.
  • Determine optimum machine/material parameters.
  • Control microstructure and material properties.
  • Manufacture using new metal powders faster and more efficiently.
  • Reduce the number of experiments needed to qualify components.
  • Mitigate risk while accelerating innovation.
  • Analyze Porosity and Meltpools.
  • Thermal history and microstructure information.
  • Determines the percentage of porosity in a part due to lack of fusion.

Additive Manufacturing of Plastics, Reinforced Polymers & Composites

Additive manufacturing of plastics and composites is evolving from rapid prototyping to industrial production. We use advanced additive manufacturing simulation platforms such as MSC Digimat, Ansys and Abaqus for simulation solution for manufacturing process of Fused Filament Fabrication (FFF), Fused Deposition Modeling (FDM) and Selective Laser Sintering (SLS) of reinforced materials. For printer manufacturers and end-users, the part fidelity is the top challenge to overcome. Simulation-based design allows our engineers to predict warpage and residual stresses of a polymer part as a function of the manufacturing process parameters. We can further optimize the process and minimize the part deformation right at their fingertips.

additive manufacturing am Plastics, Reinforced Polymers & Composites Finite Element simulation abaqus ansys MSC Marc Digimat
additive manufacturing am Finite Element simulation Simufact abaqus ansys MSC Marc Digimat 2

Metal Binder Jetting: Finite Element Simulation-Based Design

Metal Binder Jetting (MBJ) is an emerging additive manufacturing technology that has several key advantages over common Powder Bed Fusion processes; high volumes of parts can be printed with minimal spacing; no support structures are needed, and larger lot sizes are possible. It has the potential to replace low-volume, high-cost metal injection moulding for everything from automotive and aircraft parts to medical applications.

Directed Energy Deposition (DED), Direct Metal Deposition (DMD) & Laser Metal Deposition (LMD)

DED incorporates several metal 3D printing technologies that create parts by melting and fusing material as it is deposited, and is also known as 3D Laser Cladding, Wire Arc Additive Manufacturing (WAAM), Direct Metal Deposition (DMD), or Laser Metal Deposition (LMD). It’s typical fields of application are repairing and rebuilding damaged parts, but also manufacturing of new large metal parts that may not be possible with Powder Bed Fusion.

Directed Energy Deposition (DED) additive manufacturing am Finite Element simulation Simufact abaqus ansys MSC Marc Digimat 2
Optimized lattice structure of a bicycle pedal MSC Apex Generative Design additive manufacturing am Finite Element simulation Simufact abaqus ansys MSC Marc Digimat

Generative Design for Additive Manufacturing & Lattice Structures: Topology, Shape and Bead Optimization

Generative Design is an innovation that significantly alters this way of thinking. It leverages topology optimization, artificial intelligence, and advanced simulation which automatically creates multiple viable design alternatives by specifying simple design criteria.
For additive manufacturing, Optimized structure is the most important thing, and there is big effort to include all aspect of real-world physics to simulation for accurately simulate the process. In the early stages of design, FEA based Simulation in combination with artificial intelligence for topology optimization, shape optimization, bead optimization and lattice structures design, can reveal various design options to reduce weight and materials, while also maintaining and improving the rigidity and durability of the product.

 
 

 

 

WE WORK WITH YOU

We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.

Enteknograte offers a Virtual Engineering approach with FEA tools such as MSC Softwrae(Simufact, Digimat, Nastran, MSC APEX, Actran Acoustic solver), ABAQUS, Ansys, and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.
Hexagon Simufact© CoBrand RGB PRIMARY Logo

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.
Read more...

Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort. Our Finite Element (LS-Dyna, Ansys, Abaqus) and CFD simulation (Siemens Start-ccm+, Ansys Fluent , Ansys CFX and OpenFoam) for heat transfer analysis, thermal management, and virtual test process can save time and money in the design and development process, while also improving the thermal comfort and overall quality of the final product.
Read more...

Vibration Fatigue Finite Element Simulation: Time & Frequency Domain

Structural vibration can be a source for many product related problems; it can cause fatigue and durability problems as well as adverse reactions to the user or bystanders in the form of undesirable vibrations that can be felt or heard. As well, undesired structural vibrations can prevent products from operating as required and potentially becoming a safety concern. The Vibration Fatigue simulation predict fatigue in the frequency domain and it is more realistic and efficient than time-domain analysis for many applications with random loading such as wind and wave loads.
Read more...

Finite Element Simulation of Heat Treatment

In principle, there are two kinds of heat treatment processes: processes resulting in a thorough change of the microstructure and processes that result in merely changing regions close to the surface of the component. Examples of the former would be thermal processes, such as annealing and hardening. Examples of the latter, thermochemical processes, would be diffusion and coating processes, such as carburization, case hardening, nitrating, boriding.
Read more...

Finite Element Analysis of Durability and Fatigue Life

Vibration Fatigue, Creep, Welded Structures Fatigue, Elastomer and Composite Fatigue with Ansys Ncode, Simulia FE-Safe, MSC CAEFatigue, FEMFAT
Durability often dominates development agendas, and empirical evaluation is by its nature time-consuming and costly. Simulation provides a strategic approach to managing risk and cost by enabling design concepts or design changes to be studied before investment in physical evaluation. The industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life and FEMFAT used to calculate fatigue life of multiaxial, welds, short-fibre composite, vibration, crack growth, thermo-mechanical fatigue.
Read more...

Finite Element Simulation of Laser Beam / Electron Beam Welding

Laser Beam welding is a thermal joining process, in which a component is heated and welded by a laser beam. It is a high-end process for application cases requiring the highest degree of precision. A huge advantage of laser beam welding lies in the relatively narrow heat affected zone. Electron Beam welding is a thermal joining process, in which a component is heated and welded by electron beam.
Read more...

Finite Element Welding Simulation: RSW, FSW, Arc, Electron and Laser Beam Welding

Enteknograte engineers simulate the Welding with innovative CAE and virtual prototyping available in the non-linear structural codes such as LS-DYNA, Ansys, Comsol, Simufact Welding, ESI SysWeld and ABAQUS. The Finite element analysis of welding include Arc Welding, laser Beam Welding, RSW, FSW and transfer the results of welding simulation for next simulation like NVH, Crash test, Tension, Compression and shear test and fatigue simulation. We can develop special purpose user subroutine (UMAT) based on clients need to empower simulation environment to overcome any complicated problem in heat load condition, phase change and user defined material constitutive equation.
Read more...

Metal Forming Simulation: FEA Based Design and Optimization

Using advanced Metal Forming Simulation methodology and FEA tools such as Ansys, Simufact Forming, Autoform, FTI Forming, Ls-dyna and Abaqus for any bulk material forming deformation, combining with experience and development have made Enteknograte the most reliable consultant partner for large material deformation simulation: Closed die forging Open die forging processes such as cogging, saddling, and other GFM, processes Rolling for long products, Extrusion, Ring Rolling, Cross Wedge Rolling and Reducer Rolling for pre-forming Cold forming, Sheet metal forming.
Read more...

Casting: Finite Element and CFD Simulation Based Design

Using Sophisticated FEA and CFD technologies, Enteknograte Engineers can predict deformations and residual stresses and can also address more specific processes like investment casting, semi-solid modeling, core blowing, centrifugal casting, Gravity Casting (Sand / Permanent Mold / Tilt Pouring), Low Pressure Die Casting (LPDC), High Pressure Die Casting (HPDC), Centrifugal Casting and the continuous casting process. The metal casting simulation using FEA and CFD based technologies, enable us to address residual stresses, part distortion, microstructure, mechanical properties and defect detection.
Read more...

FEA Based Composite Material Design and Optimization: MSC Marc, Abaqus, Ansys, Digimat and LS-DYNA

Finite Element Method is an efficient tool for development and simulation of Composite material models of Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Nanocomposite, Rubber and Elastomer Composites, woven Composite, honeycomb cores, reinforced concrete, soil, bones ,Discontinuous Fiber, UD Composit and various other heterogeneous materials. Enteknograte Engineers are very skilled in design of composite structural parts for crash and impact analysis using advanced finite element tools: Deformation and damage analysis, Material failure predictions, Drop and crushing testing, High-speed and hypervelocity impacts, Highly nonlinear transient dynamic forces, Explosive loading and forming.
Read more...

Acoustics and Vibration: FEA and CFD for AeroAcoustics, VibroAcoustics and NVH Analysis

Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.
Read more...

In Silico Medical & Biomedical Device Testing: Finite Element & CFD Simulation and Design, Considering FDA & ASME V&V 40

Enteknograte Biomedical Engineers use FEA and CFD for simulating: Orthopedic products, Medical fasteners, Ocular modeling, Soft tissue simulation, Packaging, Electronic systems, Virtual biomechanics, Knee replacement, Human modeling, Soft tissue and joint modeling, Hospital equipment, Laser bonding, Ablation catheters, Dental implants, Mechanical connectors, Prosthetics, Pacemakers, Vascular implants, Defibrillators, Heart valve replacements.
Read more...

Simulation of Plasma Based Devices: Microwave Plasma and RF Plasma Analysis with Coupling Particle in Cell (PIC), MHD, CFD and FEA Solvers

Charged particles and their non-linear discharge characteristics have been especially difficult to model and simulate accurately. We provide consulting services for the modeling and simulation of plasma and other flow systems. Our consulting services utilize our specialized domain expertise in plasma, reactive flows and surface chemistry mechanism development and integration with multi-dimensional flow and plasma systems.
Read more...

Electromagnetic Multiphysics FEA & CFD Based Simulation

Enteknograte Finite Element Electromagnetic Field simulation solution which uses the highly accurate finite element solvers and methods such as Ansys Maxwell, Simulia Opera, Simulia CST, JMAG, Cedrat FLUX, Siemens MAGNET and COMSOL to solve static, frequency-domain, and time-varying electromagnetic and electric fields includes a wide range of solution types for a complete design flow for your electromagnetic and electromechanical devices in different industries.
Read more...