Heat Transfer-Equipment Design and Analysis for Chemical and Petrochemical Processing: Comprehensive CFD & Finite element method
FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization
Enteknograte engineering simulation for heat transfer solutions help clients to gain critical insight, and select the right design for the right application. Heat transmission by conduction, convection and radiation in laminar or turbulent flows for fluids, such as steam, thermal liquids, liquid metals and non-Newtonian fluids, can be design and analyze and new concept can be developed using engineering simulation for heat generation and heat transfer equipment. Using these solutions our engineers can identify hot spots, associated thermal stresses, equipment design and process efficiencies, and other issues that affect system performance.
Enteknograte CFD consultant service for heat exchanger design and Finite element based Structural mechanics and thermal analysis software tools provide a well-established engineering platform to help improve the design and analysis of energy-saving concepts, equipment reliability, structural integrity and related efficiency gains through virtual prototyping in a broad range of heat transfer applications. Enteknograte engineering simulation are helping customers to overcome the following and many other Heat transfer and thermal analysis-related challenges:
- Air-cooled heat exchangers
- Boilers
- Burners
- Chillers
- Condensers
- Dryers
- Evaporators
- Flares
- Heaters
- Heating and cooling tanks
- Ovens
- Plate type exchangers
- Reboilers
- Shell and tube heat exchangers
- Superheaters
Enteknograte offers a Virtual Engineering approach with CFD and FEA tools such as MSC Cradle, Ansys Fluent, StarCCM+ for flows simulation and FEA based Codes such as ABAQUS, Ansys, Nastran and LS-Dyna, encompassing the accurate prediction of in-service loads, the performance evaluation, and the integrity assessment including the influence of manufacturing the components.
Conjugate heat transfer (CHT)—the simultaneous prediction of heat transfer in both the fluid and solid portions of the domain—is of critical importance in a full-engine simulation. The accuracy of the predicted combustion in the cylinder is dependent on the temperature boundary conditions in the cylinder. By considering heat transfer in the metal components (e.g., the cylinder head, liner, piston, etc.) in the simulation, the cylinder wall no longer has a user-specified temperature, but instead has temperatures predicted as part of the system simulation.
Reactor Design & Combustion Engineering for Chemical Processing
Heat Transfer-Equipment Design and Analysis for Chemical Processing: Comprehensive CFD & Finite element method
Mixer Design and Analysis with FEA and CFD based-Simulation
Multiphase Simulation for Chemical Processing
Filtration System Design and Engineering for Chemical Processing with CFD & Finite Element Method
Chemical Processing Simulation and Design: Coupled CFD, FEA and 1D-System Modeling for Heat Transfer, Filtration & Mixer System , Reactor Design & Combustion Engineering
WE WORK WITH YOU
We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.
By using Accurate reaction mechanisms that representing every class of reaction important for combustion analysis and combination of advanced computational fluid dynamics (CFD) combustion simulation tools such as Kiva, Ansys Fluent, Ansys Forte, AVL Fire, Converge CFD, Siemens Star-ccm+ , MSC Cradle and System Modeling software such as Matlab Simulink and GT-Suite enable Enteknograte engineering team to reduce chemistry analysis time by orders of magnitude, virtually eliminating the bottleneck that chemistry integration produces during the simulation process.