

# Nonlinear Multi-scale Modeling of Rubber and Tires with DIGIMAT



#### 

### DIGIMAT for Rubber Matrix Composites

- ✓ DIGIMAT-MF: Effect of Carbon Black Content on the Rubber Stiffness (stress-Strain)
- ✓ DIGIMAT-FE: Effect of Carbon Black Clustering on the Stress-Strain Response
- ✓ DIGIMAT to CAE: Effect of Carbon Black on Tire Deflection & Footprint

#### **∞** Conclusions



Large deformation

Non linear stress-strain behavior



0.400

Strain

(Quasi) Incompressible

- Applications
  - ✓ Tires
  - ✓ Anti-vibration systems
  - ✓ Seals
  - ✓ Hoses and fluid transport systems.
  - ✓ etc

0.800

**Adigimat** 



# **Hyperelastic (Finite Strain) Material Behavior**

- - √ neo-Hookean (Compressible/Incompressible)
  - ✓ Mooney-Rivlin (Compressible/Incompressible)
  - ✓ Ogden (Compressible/Incompressible)
  - √ Swanson (Compressible/Incompressible)
  - ✓ Storakers (Highly Compressible)

Temperature-dependent Properties

Verified against standard FEA Software





# **Mean-Field Homogenization of RMC**

- Mean Field Homogenization (Finite Strain)
  - ✓ Mori-Tanaka
  - ✓ Interpolative Double Inclusion
- 2 to N-Phase "Composite"
  - √ Hyperelastic/Hyperelastic
  - √ Hyperelastic/Elastic
  - √ Hyperelastic/Rigid (Work in Progress)
  - ✓ Elastic/Hyperelastic
  - √ Hyperelastic/Void
- Microstructure Morphology
  - ✓ Inclusion Orientation:
    - Fixed/Random/General (Orientation Tensor)
  - ✓ Inclusion Shape
    - Platelets/Spheres/Fibers (short to continuous)
  - ✓ Inclusion Volume Fraction
    - From Low to High
- Thermo-mechanical Loading
- Verified against Unit Cell FEA







# **Application: Carbon Black Filled Rubber**





Effect of Carbon Black on Tire Deflection & Footprint

Effect of Carbon Black Clustering on the Stress-Strain Response



**Mean-Field Homogenization of RMC** 

Effect of Carbon Black Content on the Rubber Stiffness (stress-Strain)





- Morphological analysis on the microstructure
  - - ✓ Hyperelastic law: Ogden (N=3)
      (Coefficients fitted on experimental stress strain curve)
  - - ✓ Young Modulus = 200,000 MPa
    - $\checkmark$  Poisson ratio = 0.3
    - ✓ Volume fraction = 15%
    - ✓ Aspect ratio = 1 (Sphere)





# **Effect of Carbon Black Volume Fraction on S-S Curves**





## **Carbon Black Clustering**





- ☐ Morphological Analyses of the real microstructure
  - > Phase distribution: clusters or random
  - > Inclusions' shape: Spheres (Assume to be of the same size)
- □ Constituent properties
  - Matrix: Rubber
    - ✓ Hyperelastic law : Ogden (N=3)
       (Coefficients fitted on experimental stress strain curve)



➤ Elastic Inclusions (Carbon Black) -> Big contrast between phase properties



# **Representative Volume Element Geometry**

Microstructure without clusters (random distribution of inclusions)



Microstructure with Clusters



#### For both microstructures:

- Number of inclusions = 30
- Same size for each inclusion



# Automatic RVE Meshing with DIGIMAT-FE to ABAQUS/CAE

Microstructure without clusters (random distribution of inclusions)



- > Element Type:
  - C3D10M for Inclusion
  - C3D10MH for the matrix
- ➤ Number of Element = 66,917

Microstructure with Clusters



- > Element Type:
  - C3D10M for Inclusion
  - C3D10MH for the matrix
- > Number of Element = 64,165



### FEA on RVE vs. DIGIMAT-MF





# **Stress Distribution in the Rubber Matrix**

Microstructure without Clusters (random distribution of inclusions)

Microstructure with Clusters



Snapshot of local von-Mises stress for a nominal strain of 27%

Difference on Maximum Stress between microstructure with clusters and microstructure without clusters = 60%



### **Local Fields Distribution in the Matrix Phase**



# Nominal Strain Tensor





#### Microstructure without clusters:

- ➤ Min stress = -4.67 MPa
- ➤ Max stress = 46.43 MPa

#### Microstructure with clusters:

- $\triangleright$  Min stress = -3.97 MPa
- ➤ Max stress = 101.75 MPa

#### Microstructure without clusters:

- ➤ Min strain = 4.73%
- ➤ Max strain = 83.63%

#### Microstructure with clusters:

- $\rightarrow$  Min strain = 5.02%
- ➤ Max strain = 95.87%

Distribution function for a macroscopic nominal strain = 27%



# **Evolution of Stress/Strain in the Matrix Phase** during the loading (1)



Cauchy Stress Tensor



# **Evolution of Stress/Strain in the Matrix Phase** during the loading (2)



Nominai Strain Tensor



# Effect to Carbon Black on Tire Deflection & Footprint



Effect of Carbon Black Content on Tire Deflection & Footprint



Use DIGIMAT to CAE:

Morphology effect on the global/Local response of a tire model under two different configurations:

Vehicle loading = 1640 N

Vehicle loading = 1640 N

Inflation Mode

Pressure = 2 Bars

Pressure = 0 Bar

Source: Abaqus Users' Manual

FEA of the Tire are performed:

- > on a Linux 64 bits machine
- > on a single processor



# **Interaction between DIGIMAT and FEA**





# Tire Deflection & Footprint @ 2 bars





# Tire Deflection & Footprint @ 0 bar

#### Homogeneous Matrix

- > U=51.55 mm
- ➤ CPU=132 s

Pressure = 0 Bar (With vehicle loading)



Pressure = 2 Bars (Without vehicle loading)











#### ♥ DIGIMAT-MF

- ✓ Computes the nonlinear behavior of RMC as a function of the underlying microstructures
- ✓ A "RIGID" formulation was developed to better deal with very stiff inclusions
  - Minimizes CPU costs & Improves Convergence
  - Limited to spherical inclusions. The extension to fibers is ongoing
- ✓ Limited to random distribution of inclusions

#### **∞** DIGIMAT-FE

- ✓ Predicts detailed information in the microstructure
- ✓ Tale into account the exact inclusion distribution (e.g. clustering)

#### ○ CAE

- ✓ Use Mean-Field homogenization at the microscale
- ✓ Enables a strong coupling between the material microstructure and the behavior of the rubber structure

<u>Acknowledgments:</u> e-Xstream would link thank Goodyear and the Luxembourg Ministry of Economy for supporting the R&D work performed in the field of nonlinear mean-field homogenization of Rubber Matrix Composites.