Finite Element Simulation of Hot Forging
FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization
Hot forging comprises all forming processes that occur above the recrystallization temperature of a metal. The characteristic effect of hot forming, is the significant material strength reduction (yield stress). Hot forging is used when the goal is to achieve complex 3D geometries via forming. In addition, it enables the processing of difficult-to-form materials, which can be formed only with limitations when cold. Due to the strength reduction under hot forging conditions, the force and work demand of the processes can be lowered in comparison to cold forming.

The recrystallization is responsible, through the complete reformation of the microstructure, possibly multiple times, for the formation of a relatively fine-grained microstructure. It exhibits the optimal combination of strength and ductility. This circumstance qualifies hot forging as one of the most important manufacturing processes for the production of highly stressed safety components.
Using advanced Metal Forming Simulation methodology and FEA tools such as Ansys, Simufact Forming, Autoform, FTI Forming, Ls-dyna and Abaqus for any bulk material forming deformation, combining with experience and development have made Enteknograte the most reliable consultant partner for large material deformation simulation.

Phase Transformation and Thermal Effect in Metal Forming
Including phase transformation and thermal effect enables us to realistically simulate the hot forming processes. These processes have become very important for the automotive industry in order to meet specific requirements regarding a higher level of crash safety and a reduction of overall weight. Detailed simulation of forming enable us to engineer components with high strength, challenging geometrical complexity and minimized springback effects. In addition, we can calculate the final part properties, such as strain-stress distributions as well as the distribution and local percentages of different material phases, such as austenite, ferrite, pearlite, bainite and martensite, including the resulting hardness distribution.
Enteknograte Simulation Features:
- Realistic simulation of hot forming and quenching processes
- Take into account phase transformation during quenching and thermal distortion after cooling.
- Stamped parts with challenging geometrical complexity and minimized springback effects
- Stamped parts engineered with targeted local strength properties
- Improved crash simulation accuracy
- Hot forming processes of ultra-high strength steels

Springback Compensation
Springback compensation is carried out during the process engineering phase to improve part and tool quality before the real tryout phase begins. As a result, the process layouts realized during the early planning phases are more reliable. Robust springback compensation enables us to minimize the risk of costly changes later on in the process due to the effects of springback.

Tool Cost Estimation
We can help you to calculate tooling costs based on the defined production sequence. we can evaluate alternative production concepts and then rapidly identify the most cost-effective one. Our knowledge in FEA based design enable you to significantly reduce the time required for estimating tooling costs.
Process Planning
With special engineering methods, software and customizing ability of CAE software environment, enables us to rapidly generate and evaluate process plans. This feature enable us for increased planning reliability to meet quality and cost targets and enables the direct transfer of process plans to process engineering and validation in a short time.
WE WORK WITH YOU
We pride ourselves on empowering each client to overcome the challenges of their most demanding projects.
Sheet Metal Forming: Advanced Finite Element Method for Industry Leading Simulation
Finite Element Simulation of Hot Forging
Metal Forming Process: Open Die Forging Finite Element Simulation
Cold Forming Finite Element Simulation
Finite Element Simulation of Roll Forming and Ring Rolling
Finite Element Simulation of Heat Treatment
Hard Metal: Finite Element Simulation for Mechanical Properties on the Microstructural Level
FEA (Finite Element) Welding Simulation
Acoustics and Vibration Simulation
Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation
Metal Forming Simulation
Finite Element Analysis of Durability and Fatigue Life
Additive Manufacturing and 3D Printing
Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation
