FEA & CFD based Design and Optimization for Marine and Shipbuilding Industry

FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization

From the design and manufacture of small recreational crafts and Yachts to the large oil tankers, using FEA and CFD based simulation, Enteknograte assisting shipbuilders and boat designers to develop higher performing, safer and lower cost vessels. Through the application of simulation technology and consulting services, Enteknograte supports Marine and Shipbuilding Industry solve complex engineering challenges and mitigate environmental risks associated with seagoing loads including structural, hydrodynamics, vibro-acoustics, thermal and fatigue.

Ship propeller simulation with fluid-structure interaction msc marc cradle co-simulation FEA MBD fluid-structure Interaction

Enteknograte has a staff of highly qualified engineers and naval architects that has maintained its leading-edge know-how and development skills. Our Engineers have a rich experience in computer modeling of structures and the application of linear and non-linear (implicit and explicit) finite element codes and using advanced CFD tools in coupled with FEA to precise and real-time modeling of complicated floating structures that experience FSI for a wide range of engineering problems.

We have a proven track-record in structural analysis, marine investigation and surveying. We have a comprehensive experience in use of the most advanced computational tools to meet almost any analysis need:

  • Global and detailed direct structural assessment (FEM, Finite Element Method), including verification of Fiber-Reinforced Polymer (FRP) structures for boat.
  • Performance prediction based on Computation Fluid Dynamics (CFD) analysis.
  • CFD studies for optimization of appendages and other elements.
  • Fatigue assessment studies.
  • Modal and vibration analyses.
  • Seakeeping and seaworthiness assessment.
  • Maneuvering studies.
  • Simulation and evaluation of systems
  • Marine surveying and reporting
  • Damage surveys and investigations
  • Tie-down structural calculations and approval
  • Collision Investigation, modeling and analysis

Hydrodynamic Performance of Ship Hull

All simulations of resistance and wake assessment will be performed using advanced CFD packages. A vessel’s hydrodynamic properties, including hull design and hull-propeller interaction, resistance, maneuvering, and seakeeping, must all be optimized together in order to achieve an energy-efficient design which can perform as required under these challenging conditions. By developing a digital twin of the vessel in the design phase, our solutions allow early evaluation and optimization of hull forms under realistic conditions, helping the marine industry develop innovative, better designs faster.

Use our CFD hydrodynamic solutions to:

  • Perform full-scale CFD analysis of hull forms and appendages, removing any scaling uncertainties.
  • Predict hull resistance under realistic operating conditions, including waves and open water.
  • Analyze vessel performance when maneuvering, including self-propulsion.
  • Ensure vessel designs meet seakeeping performance criteria.
  • Examine wave loading and ensure structural stability.
  • Optimize hull forms or appendages, including energy saving devices.

CFD Optimization of Hull Form Including Hydrodynamics considerations

The hullform of a ship is decisive for its energy consumption and efficiency in that a large part of the overall resistance is determined by form effects and the aft body shape influences the propulsive losses. The shape related aspects are traditionally the domain of a ship model basin. While in the past numerous physical ship models have been created and tested in a towing tank to find the optimal solution, this role has been taken over by CFD, numerical methods which allow analyzing the performance of a ship hull before the first model is built. Enteknograte Engineering team use advanced CFD and Optimization software such as Ansys Fluent, Siemens Star-ccm+ and MSC Cradle to compute hull resistance at different stages of a design.

 
 

 

 

CFD Optimizing the Hydrodynamic Performance of a Vessel CFD FEA ABAQUS Ansys Fluent Star-ccm+ Siemens matlab CFD FEA ABAQUS Ansys Fluent Star-ccm+ Siemens matlab
Marine ship CFD Msc Cradle Ansys Fluent Siemens Star-ccm+

CFD Analysis of Propulsion Systems and Cavitation for Marine and Shipbuilding Industry

Use our Propulsion Systems and Cavitation solutions to:

  • Predict propeller performance, including the effects of cavitation and erosion.
  • Optimize propeller designs for required operational efficiency.
  • Simulate self-propulsion and analyze design-critical operating conditions.
  • Improve existing fleet efficiency via energy saving devices and other refit options.
  • Minimize vibro-acoustics, ensuring reduced environmental footprint and structural integrity.
  • Provide accurate inputs to load calculations and system simulations.

Marine Propulsion System Design: Combination of CFD & FEA for Detailed Fatigue, Strength and Vibration Analysis

Marine propulsion system designers rely on the combination of CFD and FEA software for fatigue, strength and vibration analysis. Proper propulsion system/components analyses during the design phase help avoid delays in delivery and damage problems in operation, thereby reducing expensive off-hire. Professional and reliable software and experts is essential for the design of a robust system.

 
 

 

 

Propulsion Fluent Star-ccm+ Abaqus Ansys Matlab
Cavitation Hydrodynamics of Boat Yacht Ship Hull propulsion CFD based Designsiemens star-ccm
Hydrodynamics of Boat Yacht Ship Hull propulsion CFD based Designsiemens star-ccm

Wave-Making Resistance

Wave-making resistance is a form of drag that affects surface watercraft, such as boats and ships, and reflects the energy required to push the water out of the way of the hull. This energy goes into creating the wave. For small displacement hulls, such as sailboats or rowboats, wave-making resistance is the major source of the marine vessel drag. CFD analysis is used to lower ship hydrolic drag by optimizing ship body shape.

Enteknograte’s engineering team use a virtual Water Channel for free surface simulations. It can be used to analyze the flow around ship hulls and predict their resistance, seakeeping, loads on components, and the downstream wake of both surface and submerged watercraft. The adaptive refinement algorithm can also detect and refine dynamically and automatically the ship wake and the free-surface of the fluid.

Structural Dynamics Integrity & Vibro-Acoustics Simulation, NVH for Marine & Shipbuilding Industry CFD, FEA, SEA & BEM 2

Structural Dynamics Integrity & Vibro-Acoustics Simulation for Marine & Shipbuilding Industry: CFD, FEA, SEA & BEM

Use Enteknograte FEA and CFD based structural integrity and dynamics solution services to:

  • Perform a wide range of structural analysis simulations, ensuring structural integrity.
  • Examine thermal and stress responses on vessel components early in the design cycle.
  • Determine vibro-acoustic effects and mitigate their influence.
  • Acquire physical noise and vibration data for validation and feedback on designs.
  • Optimize components while maintaining performance requirements.
  • Finite element modeling as per classification society guidelines
  • Strength analysis, fatigue and buckling analysis of plated structures and components
  • Structural reliability analysis
  • Vibration investigation including measurements and theoretical analysis
  • Noise investigation and analysis
  • Structural analysis of specialized containers and containment systems

We optimize most complicated system in simple way,  the output of simulation that represent our work quality index in critical points such as:

  • Water loading and underwater radiation
  • Noise in sensitive areas and changes in noise level
  • Insulation optimization for weight and cost savings
  • Underwater radiation from the vibrating panels
  • Underwater radiation from the propeller point sources
  • Interior noise levels in cabins from a number of different sources
Spot Weld, Seam Weld Vibration fatigue analysis in time frequency domain Simufact Welding ESI Sysweld Abaqus Ansys Enteknograte
High Temperature Fatigue Life FEA Simulation Abaqus Ansys Nastran Fe-safe Ncode Design

Finite Element Analysis of Durability and Fatigue Life for Marine and Shipbuilding Industry

We use advanced CFD tools to calculate sea sate loading effect on ship and related structures and use this loading for long term assessment and fatigue analysis. Fatigue simulation is used for many types of durability analysis:

  • High-cycle (S-N) Stress-Life fatigue
  • Low-cycle (E-N) Strain-Life fatigue
  • Neuber and other plasticity correction methods
  • Crack initiation and growth using Paris
  • “Hot spot” identification
  • Deformation and damage analysis
  • Virtual strain gauge for test-analysis correlation
  • Damage accumulation using Palmgren-Miner
  • Fatigue of Rotating Systems
  • Vibration fatigue using random loading
  • Spot and seam weld analysis
  • Classic “weld classification” approach to fatigue
  • Material failure predictions
  • Non-proportional, multiaxial stress states
  • Multiple simultaneous loads and multiple events allowed
  • Safety factor analyses

With Combination of advanced FEA and Fatigue Analysis tools, we can solve complicated problem in power plant components, power station boilers, gas turbine blades and steam turbine components in high temperature field. Also this simulation is very necessary in powertrain industry in Marine and Shipbuilding related fields, where creep and creep fatigue interaction is prevalent. We can Calculate this parameters based on clients needs:

  • Where fatigue cracks will occur
  • When fatigue cracks will occur
  • How creep mechanisms will influence fatigue life
  • The factors of safety on working stresses – for rapid optimization
  • The endurance of components in high temperature environments where fatigue damage mechanisms and creep damage mechanisms interact to significantly reduce component life

Coupling hydrodynamic CFD Simulation with structural finite element analysis

CFD analysis can optimize ship hull design, sail shape and propeller blades. Analysis predicts water free surface around the ship hull which helps to accomplish optimal hull shape with low hydrodynamic drag. CFD provides information to optimize sail shape and location for efficient and stable ship. CFD analysis can optimize propeller blade design for energy efficient ship and avoid cavitation on the blades. Enteknograte’s Engineering team provides analyses ranging from: ship keeping, slamming and sloshing, wave and wind loading on offshore and underwater structures, oil and pollutant dispersions and cavitation control to propulsion system optimization.

CFD codes such as MSC Cradle,  Ansys Fluent, Siemens StarCCM+ and FEA Codes such as ABAQUS, Nastran, LS-Dyna and the industry-leading fatigue Simulation technology such as Simulia FE-SAFE, Ansys Ncode Design Life to calculate fatigue life and MSC Actran and ESI VA One for Acoustics and VibroAcoustics simulations. Maxsurf and AVEVA Marine used in Boat, Yacht, Marine and Shipbuilding Industry initial design step. Some of our CFD and FEA simulation based design service for marine and shipbuilding industry:

  • Hydrodynamic Interaction between Bodies: shielding effects, Forward speed effects
  • Shielding effects of a pier adjacent to a ship, an important aspect in the design of breakwaters and how they affect mooring systems.
  • Design and analysis of mooring systems, including intermediate buoys and clump weights
  • Motions analysis of FPSOs (Floating production storage and offloading)
  • Calculation of shielding effects of ships and barriers
  • Multiple body interactions during LNG transfer
  • TLP tether analysis
  • Dropped object trajectory calculations
  • Concept design and analysis of wave and wind energy systems including multiphase condition including hydrodynamic effects
  • Simulation of lifting operations between floating vessels
  • Discharging landing craft from mother ships
  • Transportation of large offshore structures using barges/ships
  • Float over analyses
  • Motion analysis of spar vessels
  • Static and dynamic initial stability including the effects of mooring systems and other physical connections
  • Coupled Hydrodynamic CFD Simulation with structural finite element analysis to Simulate Transient structural behavior in irregular waves
  • Coupled cable dynamics in static and dynamic analysis to modeling of mooring system loading and response in deep waters.
  • Dynamic positioning system
  • Towing force provided by a tug
  • Damping system with unusual characteristics
  • Suction force between two ships close together, or between a ship and the sea bed
 
 

 

 

  • Investigation of course keeping and turning ability
  • Motions analysis of FPSOs (Floating production storage and offloading)
  • Manoeuvring at low / variable speed in shallow and confined seaways/ unsteady maneuvers: tacking, gibing
  • Torsional Vibration Simulation with Coupled CFD and FEA softwares to identify the interaction between components, an essential part of the system and functionality assessment
  • (unlimited) deep water-Shallow water condition
  •  Floating wind turbine design and simulation including dynamic effects due to elastic response of wind, waves in rotor blades, the tower, and the mooring lines.
  • Monohulls / conventional ships
  • Multi hulls: catamarans, SWATH, trimarans
  • Asymmetric ships (monohulls as well as catamarans)
  • Submarines
  • FEA simulation of torsional vibration regarding ice impacting on the propeller
  • Fixed models as well as free to trim and sink conditions
  • Coupled Hydrodynamic CFD Simulation with structural finite element analysis to Simulate transient strcutural behavior in irregular waves
  • Added resistance in waves
  • Combined drift and gyration
  • Ship resistance analysis
  • Hydrodynamic Interaction between Bodies: shielding effects, Forward speed effects
  • Dynamic trim and sinkage behaviour
  • Propulsion and propeller performance optimization
  • Ship wake
  • Shaft fatigue and lifecycle calculations of marine shafts torsional vibration stress levels based on low cycle, high cycle and transient fatigue
  • Vortex induced vibration analysis
  • Whipping and slamming impacts simulation: Wave-induced hull vibration for the assessment of hull girder collapse characteristics.
  • Erosion CFD Simulation including hydrodynamics effects
  • Offshore equipment stability: Buoyancy and centre of gravity studies
  • Added masses for subsea hardware CFD calculations
  • Hull performance assessment and wave-making CFD solutions
  • Sea keeping behavior in regular or irregular waves
  • Calculation of drag and lift on appendages
  • Sail or wing optimization
  • Ship structural analysis and design with FEA software such as Ansys, Abaqus and Nastran
  • Hydrodynamic plant & equipment
  • Tidal Power System Hydrodynamic Design
  • Optimal gearbox lubrication
 
 

 

 

NVH based Design and Considerations for Marine and Shipbuilding Industry including Ship, Boat, Yacht, Vessels and offshore structures

The challenge for the NVH specialists is to support the concept and design development process by reliable recommendations just-in-time prior concept or design freeze. Enteknograte’s specialists particularly use advanced methodologies for NVH simulation and optimization for Marine and Shipbuilding Industry:
  • FEA based Ship, Boat, Yacht, Vessels Powertrain
  • Structural Optimization
  • Optimization of Ship, Boat, Yacht, Vessels Engine Dynamics based on MBD ( Multi-Body Dynamics Simulation)
  • Concurrent optimization of combustion efficiency with NVH considerations for Vessels
  • Ship, Boat, Yacht, Vessels and offshore structures Interior Noise Simulation based on measurement and CAE
  • Ship, Boat, Yacht, Vessels and offshore structures Exterior Noise Simulation with couple use of CFD and FEA solvers
  • Objective Analysis of Sound Quality

Floating, Fixed & Gravity-Based Structures Design Including Hydrodynamics & Aerodynamics Effects

Using FEA and CFD software for innovation, flexibility and efficiency in marine and offshore structural engineering for oil & gas production structures, fixed offshore wind turbine support structures, ships and floating offshore structures, our engineers can give you the optimal basis for critical engineering decisions during the entire lifecycle of your asset, be it a topside, jacket, jack-up, mooring system, dynamic stability of floating structures, risers or offshore wind turbine support structure. We Use CFD tools such as MSC Cradle, Ansys Fluent, Siemens Star-ccm+ and FEA Tools such as Abaqus, MSC Nastran and LS-DYNA with combination of very experienced engineers to help our customers.
Read more...

Structural Dynamics Integrity & Vibro-Acoustics Simulation for Marine & Shipbuilding Industry

CFD, Finite Element Method (FEM), Statistical energy analysis (SEA) & Boundary element method (BEM)
Structural-borne noise and vibration need to be minimized for passenger comfort and reduced environmental impact. Our full suite of vibro-acoustics simulation, and optimization tools ensures that we can minimize the structural dynamic impact of your vessel and its components early in the design phase. From large cruise ships to yachts, from frigates to submarines, many design challenges shall be addressed in the design phases of marine applications. If on the one hand the exterior noise, due to propellers, hull radiation or muffler, has to be limited for discretion or environmental reasons; on the other hand, interior noise is of concern for crew and passengers' comfort.
Read more...

Hydropower, Solar Power and Biomass

As move to a more sustainable energy future, Hydro Power, Solar Power, Biomass and other renewable sources will play a key role in reducing our energy footprint and ensuring supply is sufficient for a modernizing population. Enteknograte’s simulation and optimization consultants support this growing industry. Our core competencies include turbine vortex simulation and prediction, acoustic interpretation and assessment, solar farm siting, composite blade analysis and optimization, and transmission dynamics simulation and optimization.
Read more...

Ship Stability & Safety Analysis Including Hydrodynamics & Aerodynamics Effects

Operability limits can also be of more functional nature, e.g. holding a vessel steady against an offshore windmill foundation, or launching and recovering a dinghy safely onboard in seaway. Many issues related to dynamic stability of the vessel in waves, e.g. steerability of high speed marine vehicle in waves or the dynamic stability of a vessel against excessive heeling in extreme sea states: ship motions and accelerations Simulation, shipping of green water analysis, slamming impacts simulation, sloshing simulation, steerability in waves analysis, DP -capability simulation.
Read more...

Cavitation in Propulsion Systems

CFD Analysis of Propulsion Systems and Cavitation for Marine and Shipbuilding Industry
For water pumps, marine propellers, and other equipment involving hydrofoils, cavitation can cause problems such as vibration, increased hydrodynamic drag, pressure pulsation, noise, and erosion on solid surfaces. Most of these problems are related to the transient behavior of cavitation structures. To better understand these phenomena, unsteady 3D simulations Modeling Cavitation of cavitating flow around single hydrofoils are often performed and the results are compared to experiments.
Read more...

Hydrodynamic Performance of Ship Hull: CFD Based Design

A typical project for hydrodynamic hull optimization may include: Establishing a close dialog between Enteknograte and the Client; Defining a realistic operating profile; Discussing and combining Enteknograte ’s design ideas with the client’s design philosophy to obtain an optimal hull in both a hydrodynamic and building perspective; Optimizing the hull forebody based on the operating profile; Optimizing the hull aftbody to improve the propulsive efficiency, including consideration on propeller and machinery configuration; Assessing the Energy Efficient Design Index.
Read more...

Hydrodynamics & HydroAcoustics simulation for AIV (Acoustic Induced Vibration)

The pressure reduction process induces turbulent pressure fluctuations in the flowing medium, which in turn excites the downstream pipe wall, causing stresses and potentially fatigue failure. The intensity of vibration tends to increase with mass flow rate, velocity, and pressure loss. AIV (Acoustic Induced Vibration) failures are known to occur preferentially at non-axisymmetric discontinuities in the downstream piping, such as at small-bore branches and their welded supports.
Read more...

Integrated Artificial Intelligence (AI) & Machine Learning - Deep Learning with CFD & FEA Simulation

Machine learning is a method of data analysis that automates analytical model building. It is a branch of Artificial Intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. With Artificial Intelligence (AI) applications in CAE, that is Mechanical Engineering and FEA and CFD Simulations as design tools, our CAE engineers evaluate the possible changes (and limits) coming from Machine learning, whether Deep Learning (DL), or Support vector machine (SVM) or even Genetic algorithms to specify definitive influence in some optimization problems and the solution of complex systems.
Read more...

Full Vehicle MultiBody Dynamics Simulation: Car Ride, Driveline, Engine and Tire MBD

With MultiBody Dynamic Simulation, you can perform various analyses on the vehicle to test the design of the different subsystems and see how they influence the overall vehicle dynamics. This includes both on- and off-road vehicles such as cars, trucks, motorcycles, buses, and land machinery. Typical full vehicle analysis includes handling, ride, driveline, comfort, and NVH. Automotive models are also used for Realtime applications (HiL, SiL, and MiL). We can also examine the influence of component modifications, including changes in spring rates, damper rates, bushing rates, and anti-roll bar rates, on the vehicle dynamics.
Read more...

Electromagnetic Multiphysics

FEA & CFD Based Simulation Including Thermal Stress, Fatigue, and Noise, Vibration & Harshness – NVH for Electric Motors
Enteknograte Finite Element Electromagnetic Field simulation solution which uses the highly accurate finite element solvers and methods such as Ansys Maxwell, Simulia Opera, Simulia CST, JMAG, Cedrat FLUX, Siemens MAGNET and COMSOL to solve static, frequency-domain, and time-varying electromagnetic and electric fields includes a wide range of solution types for a complete design flow for your electromagnetic and electromechanical devices in different industries.
Read more...

Hydroplaning (Aquaplaning) Simulation

It is important to gain insights on the interaction of a tire with a film of water in order to diagnose the onset of hydroplaning and minimize the tire’s propensity to hydroplane. A coupled Eulerian-Lagrangian methodology, using a multi-material Finite Element formulation within advanced FEA software, is used to analyze the interaction of a tire with the water film. The effect of various parameters on the onset of hydroplaning are investigated using the methodology.
Read more...

Turbine, Pump & Compressor (Axial or Centrifugal)

Multidisciplinary Turbomachinery Design, Analysis & Optimization
We can design axial turbines, Axial Pump, Centrifugal Compressor, Centrifugal Pump and Mixed Flow Compressor/Turbine with or without any pre-loaded profiles, with prismatic (cylindrical) or twisted blades, multiple extractions/injections, inter-stage heat exchangers, Curtis & Rateau stages, impulse & reaction designs, drilled and reamed nozzles, partial admission, etc. Enteknograte’s engineering team use CFD software’s such as Siemens Star-ccm+, Ansys Fluent and Numeca Fine/Turbo in co-simulation with FEA structural solvers, such as Abaqus, Ansys and MSC Nastran.
Read more...

Multi-Phase Flows CFD Analysis

Multi-Phases flows involve combinations of solids, liquids and gases which interact. Computational Fluid Dynamics (CFD) is used to accurately predict the simultaneous interaction of more than one combination of phases that can be gases, solids or fluids. Typical applications involve sprays, solid particulate transport, boiling, cavitation, state-changes, free surface flows, dispersed multiphase flows, buoyancy problems and mixed species flows. For example, the risks from flow or process-induced vibration excitation of pipework are widely acknowledged in onshore process plants, offshore topsides and subsea facilities.
Read more...

Passenger’s Thermal and Acoustic Comfort

The passenger’s thermal and acoustic comfort is an essential design-criterion for the air-conditioning and customization of a cabin. In industry, engineers conduct costly and time-consuming test series with specifically built cabin mock-ups to obtain some information about the expected passenger’s sensation of comfort already in the design process.
Read more...

Acoustics and Vibration: FEA and CFD for AeroAcoustics, VibroAcoustics and NVH Analysis

Noise and vibration analysis is becoming increasingly important in virtually every industry. The need to reduce noise and vibration can arise because of government legislation, new lightweight constructions, use of lower cost materials, fatigue failure or increased competitive pressure. With deep knowledge in FEA, CFD and Acoustic simulation, advanced Acoustic solvers and numerical methods used by Enteknograte engineers to solve acoustics, vibro-acoustics, and aero-acoustics problems in automotive manufacturers and suppliers, aerospace companies, shipbuilding industries and consumer product manufacturers.
Read more...

FEA Based Composite Material Design and Optimization: MSC Marc, Abaqus, Ansys, Digimat and LS-DYNA

Finite Element Method and in general view, Simulation Driven Design is an efficient tool for development and simulation of Composite material models of Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, Nanocomposite, Rubber and Elastomer Composites, woven Composite, honeycomb cores, reinforced concrete, soil, bones ,Discontinuous Fiber, UD Composit and various other heterogeneous materials.
Read more...

Aerodynamics Simulation: Coupling CFD with MBD, FEA and 1D-System Simulation

Aerodynamics studies can cover the full speed range of low speed, transonic, supersonic and hypersonic flows as well as turbulence and flow control. System properties such as mass flow rates and pressure drops and fluid dynamic forces such as lift, drag and pitching moment can be readily calculated in addition to the wake effects. This data can be used directly for design purposes or as in input to a detailed stress analysis. Aerodynamics CFD simulation with sophisticated tools such as MSC Cradle, Ansys Fluent and Siemens Star-ccm+ allows the steady-state and transient aerodynamics of heating ventilation & air conditioning (HVAC) systems, vehicles, aircraft, structures, wings and rotors to be computed with extremely high levels of accuracy.
Read more...

Heat Transfer and Thermal Analysis: Fluid-Structure Interaction with Coupled CFD and Finite Element Based Simulation

We analyze system-level thermal management of vehicle component, including underhood, underbody and brake systems, and design for heat shields, electronics cooling, HVAC, hybrid systems and human thermal comfort. Our Finite Element (LS-Dyna, Ansys, Abaqus) and CFD simulation (Siemens Start-ccm+, Ansys Fluent , Ansys CFX and OpenFoam) for heat transfer analysis, thermal management, and virtual test process can save time and money in the design and development process, while also improving the thermal comfort and overall quality of the final product.
Read more...

Fatigue Analysis of Welded Structures

Enteknograte use advanced Numerical simulation software and methods to simulate the welding behavior in real service load condition and estimate its life. The Seam Weld and Spot Weld fatigue simulation enables the fatigue analysis of joints including different type of welding such as fillet, overlap, spot welds in thin sheets and laser welded joints.
Read more...

Vibration Fatigue Finite Element Simulation: Time & Frequency Domain

Structural vibration can be a source for many product related problems; it can cause fatigue and durability problems as well as adverse reactions to the user or bystanders in the form of undesirable vibrations that can be felt or heard. As well, undesired structural vibrations can prevent products from operating as required and potentially becoming a safety concern. The Vibration Fatigue simulation predict fatigue in the frequency domain and it is more realistic and efficient than time-domain analysis for many applications with random loading such as wind and wave loads.
Read more...