Fatigue Analysis of Welded Structures Using the Finite Element Method

FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization

Enteknograte use advanced Numerical simulation software and methods to simulate the welding behavior in real service load condition and estimate its life. The Seam Weld and Spot Weld fatigue simulation enables the fatigue analysis of joints including different type of welding such as fillet, overlap, spot welds in thin sheets and laser welded joints.

Spot Weld, Seam Weld Vibration fatigue analysis in time frequency domain

Fatigue simulation is used for many types of durability analysis:

  • High-cycle (S-N) Stress-Life fatigue
  • Low-cycle (E-N) Strain-Life fatigue
  • Neuber and other plasticity correction methods
  • Crack initiation and growth using Paris
  • “Hot spot” identification
  • Deformation and damage analysis
  • Virtual strain gauge for test-analysis correlation
  • Damage accumulation using Palmgren-Miner
  • Fatigue of Rotating Systems
  • Vibration fatigue using random loading
  • Spot and seam weld analysis
  • Classic “weld classification” approach to fatigue
  • Material failure predictions
  • Non-proportional, multiaxial stress states
  • Multiple simultaneous loads and multiple events allowed
  • Safety factor analyses
Fatigue fe-safe abaqus ansys caefatigue ncode RSW Seam Welding Simulation Finite element FEA Simufact welding ESI sysweld

Based on what we want to Design and Analysis, Stress, Strain or temperature from finite element (FE) software such as ANSYS, ABAQUS, NASTRAN, LS-Dyna, MSC Marc etc used. This FEA (Finite Element Analysis) must contain correspond simulation step detail based on what we want to do in Fatigue Simulation. Enteknograte engineers use different methodology for each specific industrial and research fields and multiphysics. MSC CAEFatigue, Ansys Ncode, Simulia FE-Safe and FEMFAT are our fatigue analysis tools. With the Fatigue analysis, we can:

  •  Correct for mean stress and surface finish effects
  •  Determine a scale or fatigue concentration factor required to achieve a target life
  •  Review damage histograms to determine which load cycles were most damaging
  •  Output damage time histories to show exactly when the damage occurred

Industry is putting increasing pressure on manufacturers to use less material to deliver lightweight but stronger components, less warranty and recall costs and all in less time. Traditional methods of over-engineering components and expensive, open-ended test-redesign-test programs are not meeting the needs of the modern engineering company. For welded joints and welded structures, the prediction of failure locations and the calculation of fatigue lives are notoriously complex and difficult tasks, which can often result in poor correlation with test data.