Strength and Durability Analysis
FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization
In order to achieve the aim of reducing weight for better performance and lower fuel consumption, component engineering of engines and powertrains continues to approach the limits of strength and durability.
FE Based Fatigue, Durability & Random Response Solution
By combination of best in class CAE package, Enteknograte propose best solution for strength and durability analysis with various modeling depth levels ensuring accuracy according to stage in the development process.
The solution comprises the whole analysis workflow from dynamic analysis of subsystems and entire powertrains up to stress and fatigue strength evaluation of powertrain components, Outstanding models of lubricated contacts (slider bearings, piston and piston rings) facilitate detailed investigations of the contact behavior, including the prediction of friction and wear.
Fatigue Calculations at Welds in the Frequency and Time Domains
Physical testing for all possible failure scenarios can be cost prohibitive. Durability analysis from finite element models is becoming increasingly accepted in the design process. The analysis is no longer limited to fatigue life calculations - output can now include safe working stresses, warranty claim curves, and the effects of high temperatures, manufacturing processes and assembly stresses.
Innovative Design and Virtual Test
|
|
Based on what we want to Design and Analysis, Stress, Strain or temperature from finite element (FE) software such as ANSYS, ABAQUS, NASTRAN, LS-Dyna, MSC Marc etc used. This FEA (Finite Element Analysis) must contain correspond simulation step detail based on what we want to do in Fatigue Simulation. Enteknograte engineers use different methodology for each specific industrial and research fields and multiphysics. MSC CAEFatigue, Ansys Ncode, Simulia FE-Safe and FEMFAT are our fatigue analysis tools. With the Fatigue analysis, we can:
- Correct for mean stress and surface finish effects
- Determine a scale or fatigue concentration factor required to achieve a target life
- Review damage histograms to determine which load cycles were most damaging
- Output damage time histories to show exactly when the damage occurred
Durability and Fatigue Application highlights in different industry
- Fatigue Simulation in Aerospace: Wings, panels, engine blades, rivets, bondings, valves, nacelles, interior component, etc.
- Durability and Fatigue in Automotive: Chassis, rivets, bolts, wheels, connecting rods, full body systems, door, seat, dashboard, interior component, drivetrain component, underhood, oil cooler bracket, front-end carrier,Fatigue behavior of vehicle-mounted medical equipment as it interacts with the suspension dynamics of the vehicle and the road load, etc.
- Fatigue Application in Biomedical: Prosthesis, Fatigue properties of medical implants, etc.
- Durability and Fatigue in Energy sector: Pipes, vessel, valves, fan blade, pump body, Effects of the complex conditions seen in wind turbines such as vibration, the effects of rotating components and different wind states, etc.
- Fatigue Simulation in Electronics: Connectors, clips, electronic racks and housing assemblies,etc.
- Fatigue Simulation in Marine and offshore: Ship hulls and staructures fatigue analysis of welded joints using FEA models, etc.
Finite Element based Design and Analysis of Powertrain & Engines
With using FE models of the rotation of crankshafts and the movement of pistons and conrods our engineers can simulate the material property changes for fatigue and creep-fatigue through the engine cycle including complex loading conditions, intermittent contact and complex duty cycles.
Suspension and Chassis
Enteknograte engineers handle complex multiaxial road load data using PSDs, steady state modal and random transient dynamic analyses to calculate the effects of complex vibration fatigue. FE models of large flexible components and structures are analyzed efficiently and special consideration for efficient simulation of seam welds, structural welds and spot welds, performed in FEA level.
Exhausts
Our engineers can simulate the fatigue life of exhaust components including structural and thermal loading variations and creep and creep-fatigue interaction effects.