Simulation for Quenching: Virtual Heat Treatment Optimization
FEA & CFD Based Simulation Design Analysis Virtual prototyping MultiObjective Optimization
Quenching is used in the production of cast or otherwise-produced metal components. In particular, immersion or direct quenching processes are widely adopted procedures in the automotive and aerospace industries to minimize the formation of undesirable thermal and transformational gradients, which may lead to increased distortion and cracking. The proposed method for simulation must accurately predict real-time quenching effects, local temperature gradients and the overall cooling history of complex quenched components.
Predict temperature history of thermally treated components
Optimize thermal treatment process utilizing virtual prototyping
FEA (Finite Element Analysis) in Metal Forming
Enteknograte engineers can simulate any manufacturing process for hot, warm, and cold forging, which includes but not limited to:
- Closed die forging
- Open die forging processes such as cogging, saddling, and other GFM processes
- Rolling for long products
- Extrusion
- Ring Rolling
- Cross Wedge Rolling and Reducer Rolling for pre-forming
- Cold forming
- Sheet metal forming
Phase Transformation and Thermal Effect in Metal Forming
Including phase transformation and thermal effect enables us to realistically simulate the hot forming processes. These processes have become very important for the automotive industry in order to meet specific requirements regarding a higher level of crash safety and a reduction of overall weight. Detailed simulation of forming enable us to engineer components with high strength, challenging geometrical complexity and minimized springback effects. In addition, we can calculate the final part properties, such as strain-stress distributions as well as the distribution and local percentages of different material phases, such as austenite, ferrite, pearlite, bainite and martensite, including the resulting hardness distribution.
Enteknograte Simulation Features:
- Realistic simulation of hot forming and quenching processes
- Take into account phase transformation during quenching and thermal distortion after cooling.
- Stamped parts with challenging geometrical complexity and minimized springback effects
- Stamped parts engineered with targeted local strength properties
- Improved crash simulation accuracy
- Hot forming processes of ultra-high strength steels
Material Utilization
One of the most important issues in the industry is material utilization. As the price for both steel and aluminum continues to increase and more and more high-strength steels and lightweight materials are being used in the automotive industry, manufacturers continue to search for ways to optimize their use of materials. Enteknograte engineering team enable you to predict the potential of blank shape and nesting. We can efficiently calculate the optimal layout of the blank on the coil taking into consideration minimal material utilization.
Springback Compensation
Springback compensation is carried out during the process engineering phase to improve part and tool quality before the real tryout phase begins. As a result, the process layouts realized during the early planning phases are more reliable. Robust springback compensation enables us to minimize the risk of costly changes later on in the process due to the effects of springback.
Tool Cost Estimation
We can help you to calculate tooling costs based on the defined production sequence. we can evaluate alternative production concepts and then rapidly identify the most cost-effective one. Our knowledge in FEA based design enable you to significantly reduce the time required for estimating tooling costs.
Process Planning
With special engineering methods, software and customizing ability of CAE software environment, enables us to rapidly generate and evaluate process plans. This feature enable us for increased planning reliability to meet quality and cost targets and enables the direct transfer of process plans to process engineering and validation in a short time.
Surface Defects Avoidance
Surface defects are small concave imperfections that can develop during forming on outer convex panels of automotive parts like doors. They occur during springback steps, after drawing in the vicinity of bending over a curved line and flanging/hemming in the vicinity of the upper corner of a door. They can alter significantly the final quality of the automobile and it is of primary importance to deal with them as early as possible in the design of the forming tools. As a result, during the product development process, much attention is paid to avoiding defects on surface appearance and the resulting surface quality. Enteknograte engineering team can evaluate surface defects in order to take steps to improve the surface quality with FEA based Design and optimization.